Browse through our publications, organised by year and in alphabetical order by first author. On this page you can find over 700 publications based on the Lothian Birth Cohorts data since 2001, led by the team and other research experts in Edinburgh and in other universities in the UK and internationally. In addition, the LBC team members apply their varied expertise using other datasets, including the UK Biobank and Generation Scotland. Follow the link below to access these publications. Browse the team's publications that are not based on LBC1921 or LBC1936 data 2024Ball, E. L., et al. (2024). Childhood intelligence and risk of depression in later-life: A longitudinal data-linkage study. SSM - Population Health. https://doi.org/10.1016/j.ssmph.2023.101560Baranyi, G., et al. (2024). Life-course neighbourhood deprivation and brain structure in older adults: The Lothian Birth Cohort 1936. Molecular Psychiatry. https://doi.org/10.1038/s41380-024-02591-9Corley, J., et al. (2024). Life-course pathways to exceptional longevity: Evidence from the Lothian Birth Cohort of 1921. The Journals of Gerontology, Series A: Biological Sciences and Medical Sciences. https://doi.org/10.1093/gerona/glae166Corley, J., et al. (2024). Gardening and cognitive ageing: Longitudinal findings from the Lothian Birth Cohort of 1921. Journal of Environmental Psychology. https://doi.org/10.1016/j.jenvp.2024.102361de Vries, P. S., et al. (2024). A genetic association study of circulating coagulation Factor VIII and von Willebrand Factor levels. Blood Journal. https://doi.org/10.1182/blood.2023021452Deary, I. J., et al. (2024). Inspection time and intelligence: A five-wave longitudinal study from age 70 to age 82 in the Lothian Birth Cohort 1936. Intelligence. https://doi.org/10.1016/j.intell.2024.101844Gibbon, S., et al. (2024). PallorMetrics: Software for automatically quantifying optic disc pallor in fundus photographs, and associations with peripapillary RNFL thickness. Translational Vision Science & Technology. https://doi.org/10.1167/tvst.13.5.20Hatton, A. A., et al. (2024). Genetic control of DNA methylation is largely shared across European and East Asian populations. Nature Communications. https://doi.org/10.1038/s41467-024-47005-0Higbee, D. H., et al. (2024). Genome-wide association study of preserved ratio impaired spirometry (PRISm). European Respiratory Journal. https://doi.org/10.1183/13993003.00337-2023Keaton, J. M., et al. (2024). Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk scores for blood pressure traits. Nature Genetics. https://doi.org/10.1038/s41588-024-01714-wMei, H., et al. (2024). Multi-omics and pathway analyses of genome-wide associations implicate regulation and immunity in verbal declarative memory performance. Alzheimer’s Research & Therapy. https://doi.org/10.1186/s13195-023-01376-6Moodie, J. E., et al. (2024). General and specific patterns of cortical gene expression as spatial correlates of complex cognitive functioning. Human Brain Mapping. https://doi.org/10.1002/hbm.26641Page, D., et al. (2024). Examining the neurostructural architecture of intelligence: The Lothian Birth Cohort 1936 study. Cortex. https://doi.org/10.1016/j.cortex.2024.06.007Quidé, Y., et al. (2024). ENIGMA-Chronic Pain: A worldwide initiative to identify brain correlates of chronic pain. Pain. https://doi.org/10.1097/j.pain.0000000000003317Smith, H. M., et al. (2024). Epigenetic scores of blood-based proteins as biomarkers of general cognitive function and brain health. Clinical Epigenetics. https://doi.org/10.1186/s13148-024-01661-7Sterenborg, R. B. T. M., et al. (2024). Multi-trait analysis characterizes the genetics of thyroid function and identifies causal associations with clinical implications. Nature Communications. https://doi.org/10.1038/s41467-024-44701-9Sweetman, J., et al. (2024). The relationship between anxiety, depression and cognitive functioning in older adults: An exploratory cross‐sectional analysis of Wave 1 Lothian Birth Cohort 1936 data. International Journal of Geriatric Psychiatry. https://doi.org/10.1002/gps.61512023Aribisala, B. S., et al. (2023). Sleep Quality, Perivascular Spaces and Brain Health Markers in Ageing-A Longitudinal Study in the Lothian Birth Cohort 1936. Sleep Medicine. https://doi.org/10.1016/j.sleep.2023.03.016Baranyi, G., et al. (2023). Neighbourhood Deprivation across Eight Decades and Late-Life Cognitive Function in the Lothian Birth Cohort 1936: A Life-Course Study. Age and Ageing. https://doi.org/10.1093/ageing/afad056Baranyi, G., et al. (2023). Early life PM2.5 exposure, childhood cognitive ability and mortality between age 11 and 86: A record-linkage life-course study from Scotland. Environmental Research. https://doi.org/10.1016/j.envres.2023.117021Bernabeu, E., et al. (2023). Refining Epigenetic Prediction of Chronological and Biological Age. Genome Medicine. https://doi.org/10.1186/s13073-023-01161-yChan, B. C. L., Luciano, M. & Lee, B. (2023). A Longitudinal Study of Physical Activity and Personality in the Wellbeing of Older Adults. Journal of Aging and Health. https://doi.org/10.1177/08982643231206222Chundru, V. K., et al. (2023). Rare Genetic Variants Underlie Outlying Levels of DNA Methylation and Gene-Expression. Human Molecular Genetics. https://doi.org/10.1093/hmg/ddad028Clancy, U., et al. (2023). Are Neuropsychiatric Symptoms a Marker of Small Vessel Disease Progression in Older Adults? Evidence from the Lothian Birth Cohort 1936. International Journal of Geriatric Psychiatry. https://doi.org/10.1002/gps.5855Corley, J., et al. (2023). Predictors of Longitudinal Cognitive Ageing from Age 70 to 82 including APOE e4 Status, Early-Life and Lifestyle Factors: the Lothian Birth Cohort 1936. Molecular Psychiatry. https://doi.org/10.1038/s41380-022-01900-4Duperron, M. G., et al. (2023). Genomics of Perivascular Space Burden Unravels Early Mechanisms of Cerebral Small Vessel Disease. Nature Medicine. https://doi.org/10.1038/s41591-023-02268-wFernandez-Rozadilla, C., et al. (2023). Deciphering Colorectal Cancer Genetics through Multi-Omic Analysis of 100,204 Cases and 154,587 Controls of European and East Asian Ancestries. Nature Genetics. https://doi.org/10.1038/s41588-022-01222-9Hahn, J., et al. (2023). DNA Methylation Analysis is Used to Identify Novel Genetic Loci Associated with Circulating Fibrinogen Levels in Blood. Journal of Thrombosis and Haemostasis. https://doi.org/10.1016/j.jtha.2023.01.015King, D., et al. (2023). Synaptic resilience is associated with maintained cognition during ageing. Alzheimer’s & Dementia. https://doi.org/10.1002/alz.12894Leighton, D. J., et al. (2023). Genotype–Phenotype Characterisation of Long Survivors with Motor Neuron Disease in Scotland. Journal of Neurology. https://doi.org/10.1007/s00415-022-11505-0Mathieson, I., eQTLGen Consortium, et al. (2023). Genome-Wide Analysis Identifies Genetic Effects on Reproductive Success and Ongoing Natural Selection at the FADS Locus. Nature Human Behaviour. https://doi.org/10.1038/s41562-023-01528-6McGreevy, K. M., et al. (2023). DNAmFitAge: Biological Age Indicator Incorporating Physical Fitness. Aging. https://doi.org/10.18632/aging.204538Merzbacher, C., et al. (2023). Integration of datasets for individual prediction of DNA methylation-based biomarkers. Genome Biology. https://doi.org/10.1186/s13059-023-03114-5Mullin, D. S., et al. (2023). Identifying Dementia Using Medical Data Linkage in a Longitudinal Cohort Study: Lothian Birth Cohort 1936. BMC Psychiatry. https://doi.org/10.1186/s12888-023-04797-7Mullin, D. S., et al. (2023). Motoric cognitive risk syndrome trajectories and incident dementia over 10 years. Cerebral Circulation - Cognition and Behavior. https://doi.org/10.1016/j.cccb.2023.100178Okely, J. A., Cox, S. R., Deary, I. J., Luciano, M., & Overy, K. (2023). Cognitive aging and experience of playing a musical instrument. Psychology and Aging. https://doi.org/10.1037/pag0000768Saunders, T., et al. (2023). Neurogranin in Alzheimer's Disease and Ageing: A Human Post-Mortem Study. Neurobiology of Disease. https://doi.org/10.1016/j.nbd.2023.105991Saunders, T. S., et al. (2023). Predictive Blood Biomarkers and Brain Changes Associated with Age-Related Cognitive Decline. Brain Communications. https://doi.org/10.1093/braincomms/fcad113Shrine, N., et al. (2023). Multi-Ancestry Genome-Wide Association Analyses Improve Resolution of Genes and Pathways Influencing Lung Function and Chronic Obstructive Pulmonary Disease Risk. Nature Genetics. https://doi.org/10.1038/s41588-023-01314-0Tin, A., et al. (2023). Identification of Circulating Proteins Associated with General Cognitive Function among Middle-aged and Older Adults. Communications Biology. https://doi.org/10.1038/s42003-023-05454-1Weihs, A., et al. (2023). Epigenome-Wide Association Study Reveals CpG Sites Associated with Thyroid Function and Regulatory Effects on KLF9. Thyroid. https://doi.org/10.1089/thy.2022.0373Yang, Y., et al. (2023). Epigenetic and Integrative Cross-Omics Analyses of Cerebral White Matter Hyperintensities on MRI. Brain. https://doi.org/10.1093/brain/awac290 2022Baranyi, G., et al. (2022). Life-Course Exposure to Air Pollution and Biological Ageing in the Lothian Birth Cohort 1936. Environment International. https://doi.org/10.1016/j.envint.2022.107501Baranyi, G., et al. (2022). Association of Life-Course Neighborhood Deprivation With Frailty and Frailty Progression From Ages 70 to 82 Years in the Lothian Birth Cohort 1936. American Journal of Epidemiology. https://doi.org/10.1093/aje/kwac134Barnes, A., et al. (2022). Topological Relationships between Perivascular Spaces and Progression of White Matter Hyperintensities: A Pilot Study in a Sample of the Lothian Birth Cohort 1936. Frontiers in Neurology. https://doi.org/10.3389/fneur.2022.889884Bernal, J., et al. (2022). Assessment of Perivascular Space Filtering Methods Using a Three-dimensional Computational Model. Magnetic Resonance Imaging. https://doi.org/10.1016/j.mri.2022.07.016Brouwer, R. M., et al. (2022). Genetic Variants Associated with Longitudinal Changes in Brain Structure across the Lifespan. Nature Neuroscience. https://doi.org/10.1038/s41593-022-01042-4Chamberlain, J. D., et al. (2022). Blood DNA Methylation Signatures of Lifestyle Exposures: Tobacco and Alcohol Consumption. Clinical Epigenetics. https://doi.org/10.1186/s13148-022-01376-7Corley, J. (2022). Adherence to the MIND Diet Is Associated with 12-Year All-Cause Mortality in Older Adults. Public Health Nutrition. https://doi.org/10.1017/S1368980020002979Conte, F. P., et al. (2022). Cognitive Change before Old Age (11 to 70) Predicts Cognitive Change during Old Age (70 to 82). Psychological Science. https://doi.org/10.1177/09567976221100264Gadd, D.A., et al. (2022). Epigenetic Scores for the Circulating Proteome as Tools for Disease Prediction. ELIFE. https://doi.org/10.7554/eLife.71802Higham, J., et al. (2022). Local CpG Density Affects the Trajectory and Variance of Age-associated DNA Methylation Changes. Genome Biology. https://doi.org/10.1186/s13059-022-02787-8Huan, T., et al. (2022). Integrative Analysis of Clinical and Epigenetic Biomarkers of Mortality. Aging Cell. https://doi.org/10.1111/acel.13608Iveson, M. H., Cox, S. R., & Deary, I. J. (2022). Intergenerational Social Mobility and Health in Later Life: Diagonal Reference Models Applied to the Lothian Birth Cohort 1936. The Journals of Gerontology: Series B. https://doi.org/10.1093/geronb/gbac107Jochems, A. C. C., et al. (2022). Contribution of White Matter Hyperintensities to Ventricular Enlargement in Older Adults. NeuroImage: Clinical. https://doi.org/10.1016/j.nicl.2022.103019Joseph, C. B., et al. (2022). Meta-GWAS Reveals Novel Genetic Variants Associated with Urinary Excretion of Uromodulin. Journal of the American Society of Nephrology. https://doi.org/10.1681/ASN.2021040491Lahti, J., et al. (2022). Genome-Wide Meta-Analyses Reveal Novel Loci for Verbal Short-Term Memory and Learning. Molecular Psychiatry. https://doi.org/10.1038/s41380-022-01710-8Lee, M., et al. (2022). Pulmonary Function and Blood DNA Methylation: A Multiancestry Epigenome-wide Association Meta-analysis. American Journal of Respiratory and Critical Care Medicine. https://doi.org/10.1164/rccm.202108-1907OCLu, A. T., et al. (2022). DNA Methylation GrimAge Version 2. Aging. https://doi.org/10.18632/aging.204434Luciano, M., et al. (2022). Mediterranean-Type Diet and Brain Structural Change from 73 to 79 Years in the Lothian Birth Cohort 1936. The Journal of Nutrition, Health & Aging. https://doi.org/10.1007/s12603-022-1760-5McCartney, D. L., et al. (2022). Blood-Based Epigenome-Wide Analyses of Cognitive Abilities. Genome Biology. https://doi.org/10.1186/s13059-021-02596-5Mishra, A., et al. (2022). Gene-Mapping Study of Extremes of Cerebral Small Vessel Disease Reveals TRIM47 as a Strong Candidate. Brain. https://doi.org/10.1093/brain/awab432Mullin, D. S., Cockburn, A., Welstead, M., Luciano, M., Russ, T. C., & Muniz‐Terrera, G. (2022). Mechanisms of Motoric Cognitive Risk—Hypotheses Based on a Systematic Review and Meta‐analysis of Longitudinal Cohort Studies of Older Adults. Alzheimer's & Dementia. https://doi.org/10.1002/gps.5824Okely, J. A., Overy, K., & Deary, I. J. (2022). Experience of Playing a Musical Instrument and Lifetime Change in General Cognitive Ability: Evidence from the Lothian Birth Cohort 1936. Psychological Science. https://doi.org/10.1177/09567976221092726Robertson, N. A., et al. (2022). Longitudinal Dynamics of Clonal Hematopoiesis Identifies Gene-Specific Fitness Effects. Nature Medicine. https://doi.org/10.1038/s41591-022-01883-3Shen, X., et al. (2022). DNA Methylome-Wide Association Study of Genetic Risk for Depression Implicates Antigen Processing and Immune Responses. Genome Medicine. https://doi.org/10.1186/s13073-022-01039-5Sliz, E., et al. (2022). Circulating Metabolome and White Matter Hyperintensities in Women and Men. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.121.056892Stevenson, A. J., et al. (2022). A Comparison of Blood and Brain‐Derived Ageing and Inflammation‐Related DNA Methylation Signatures and their Association with Microglial Burdens. European Journal of Neuroscience. https://doi.org/10.1111/ejn.15661Wielscher, M., et al. (2022). DNA Methylation Signature of Chronic Low-Grade Inflammation and Its Role in Cardio-Respiratory Diseases. Nature Communications. https://doi.org/10.1038/s41467-022-29792-6Welstead, M., Luciano, M., Russ, T. C., & Muniz-Terrera, G. (2022). Heterogeneity of Frailty Trajectories and Associated Factors in the Lothian Birth Cohort 1936. Gerontology. https://doi.org/10.1159/000519240 2021Altschul, D., Iveson, M., & Deary, I.J. (2021). Generational differences in loneliness and its psychological and sociodemographic predictors: an exploratory and confirmatory machine learning study. Psychological Medicine. https://doi.org/10.1017/S0033291719003933Backhouse, E., et al. (2021). Early Life Predictors of Late Life Cerebral Small Vessel Disease in Four Prospective Cohort Studies. Brain. https://doi.org/10.1093/brain/awab331Bressler, J., et al. (2021). Association of Low-Frequency and Rare Coding Variants with Information Processing Speed. Translational Psychiatry. https://doi.org/10.1038/s41398-021-01736-6Buchanan, C. R., et al. (2021). Comparison of structural MRI brain measures between 1.5 and 3 T: Data from the Lothian Birth Cohort 1936. Human Brain Mapping. https://doi.org/10.1002/hbm.25473Chung, J., et al. (2021). Rare Missense Functional Variants at COL4A1 and COL4A2 in Sporadic Intracerebral Hemorrhage. Neurology. https://doi.org/10.1212/WNL.0000000000012227Conole, E. L. S., et al. (2021). DNA Methylation and Protein Markers of Chronic Inflammation and Their Associations With Brain and Cognitive Aging. Neurology. https://doi.org/10.1212/WNL.0000000000012997Corley, J., & Deary. I. (2021). Dietary Patterns and Trajectories of Global and Domain-Specific Cognitive Decline in the Lothian Birth Cohort 1936. British Journal of Nutrition. https://doi.org/10.1017/S0007114520005139Corley, J., et al. (2021). Home garden use during COVID-19: Associations with physical and mental wellbeing in older adults. Journal of Environmental Psychology. https://doi.org/10.1016/j.jenvp.2020.101545Cox, S. R., et al. (2021). Three major dimensions of human brain cortical ageing in relation to cognitive decline across the eighth decade of life. Molecular Psychiatry. https://doi.org/10.1038/s41380-020-00975-1Cuellar-Partida, G., et al. (2021). Genome-wide association study identifies 48 common genetic variants associated with handedness. Nature Human Behavior. https://doi.org/10.1038/s41562-020-00956-yDeary, I. J., Cox, S. R., & Hill, W. D. (2021). Genetic variation, brain, and intelligence differences. Molecular Psychiatry. https://doi.org/10.1038/s41380-021-01027-yDeary, I. J., Hill, W. D., & Gale, C. R. (2021). Intelligence, health and death. Nature Human Behavior. https://doi.org/10.1038/s41562-021-01078-9Deary, I. J., & Sternberg, R.J. (2021). Ian Deary and Robert Sternberg answer five self-inflicted questions about human intelligence. Intelligence. https://doi.org/10.1016/j.intell.2021.101539de las Fuentes, L., et al. (2021). Gene-Educational Attainment Interactions in a Multi-Ancestry Genome-Wide Meta-Analysis Identify Novel Blood Pressure Loci. Molecular Psychiatry. https://doi.org/10.1038/s41380-020-0719-3Gadd, D. A., et al. (2021). Epigenetic predictors of lifestyle traits applied to the blood and brain. Brain Communications. https://doi.org/10.1093/braincomms/fcab082Hamilton, O., et al. (2021). Associations between total MRI-visible small vessel disease burden and domain-specific cognitive abilities in a community-dwelling older-age cohort. Neurobiology of Aging. https://doi.org/10.1101/2021.02.02.21250986Hamilton, O., et al. (2021). Cerebral small vessel disease burden and longitudinal cognitive decline from age 73 to 82: the Lothian Birth Cohort 1936. Translational Psychiatry. https://doi.org/10.1038/s41398-021-01495-4Hillary, R. F., et al. (2021). An Epigenetic Predictor of Death Captures Multi-Modal Measures of Brain Health. Molecular Psychiatry. https://doi.org/10.1101/703504Huguet, G., et al. (2021). Genome wide analysis of gene dosage in 24,092 individuals estimates that 10,000 genes modulate cognitive ability. Molecular Psychiatry. https://doi.org/10.1038/s41380-020-00985-zIveson, M. H., Taylor, A., Harris, S. E., Deary, I. J., & McIntosh, A. M. (2021). Apolipoprotein E e4 allele status and later-life depression in the Lothian Birth Cohort 1936. Psychological Medicine. https://doi.org/10.1017/S0033291721000623Jia, T., et al. (2021). Epigenome-Wide Meta-Analysis of Blood DNA Methylation and Its Association with Subcortical Volumes: Findings from the ENIGMA Epigenetics Working Group. Molecular Psychiatry. https://doi.org/10.1101/460444Juvinao-Quintero, D. L., et al. (2021). DNA methylation of blood cells is associated with prevalent type 2 diabetes in a meta-analysis of four European cohorts. Clinical Epigenetics. https://doi.org/10.1186/s13148-021-01027-3Lam, M., et al. (2021). Identifying Nootropic Drug Targets via Large-Scale Cognitive GWAS and Transcriptomics. Neuropsychopharmacology. https://doi.org/10.1101/2020.02.06.934752Madole, J. W., et al. (2021). Aging-Sensitive Networks Within the Human Structural Connectome Are Implicated in Late-Life Cognitive Declines. Biological Psychiatry. https://doi.org/10.1016/j.biopsych.2020.06.010McCartney, D. L., et al. (2021). Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biology. https://doi.org/10.1186/s13059-021-02398-9Min, J. L., et al. (2021). Genomic and Phenotypic Insights from an Atlas of Genetic Effects on DNA Methylation. Nature Genetics. https://doi.org/10.1038/s41588-021-00923-xMurray, A. L., Vollmer, M., Deary, I., Terrera, G., & Booth, T. (2021). Assessing individual-level change in dementia research. Alzheimer’s Research & Therapy. https://doi.org/10.1186/s13195-021-00768-wNabais, M. F., et al. (2021). Meta-analysis of genome-wide DNA methylation identifies shared associations across neurodegenerative disorders. Genome Biology. https://doi.org/10.1186/s13059-021-02275-5Okely, J. A., Deary, I. J., & Overy, K. (2021). The Edinburgh Lifetime Musical Experience Questionnaire (ELMEQ). PLoS ONE. https://doi.org/10.1371/journal.pone.0254176Portilla-Fernández, E., et al. (2021). Meta-analysis of epigenome-wide association studies of carotid intima-media thickness. European Journal of Epidemiology. https://doi.org/10.1007/s10654-021-00759-zRacine Maurice, S., et al. (2021). Childhood Socioeconomic Status Does Not Predict Late-Life Cognitive Decline in the 1936 Lothian Birth Cohort. Frontiers Psychology. https://doi.org/10.3389/fpsyg.2021.679044Russ, T. C., et al. (2021). Life Course Air Pollution Exposure and Cognitive Decline: Modelled Historical Air Pollution Data and the Lothian Birth Cohort 1936. Journal of Alzheimer’s Disease. https://doi.org/10.3233/JAD-200910Stevenson, A. J., et al. (2021). Creating and validating a DNA methylation-based proxy for interleukin-6. The Journals of Gerontology: Series A. https://doi.org/10.1093/gerona/glab046Sun, D., et al. (2021). Multi-Ancestry Genome-Wide Association Study Accounting for Gene-Psychosocial Factor Interactions Identifies Novel Loci for Blood Pressure Traits. HGG Advances. https://doi.org/10.1016/j.xhgg.2020.100013Taylor, A. M., et al. (2021). Impact of COVID-19 lockdown on psychosocial factors, health, and lifestyle in Scottish octogenarians: The Lothian Birth Cohort 1936 study. PLoS ONE. https://doi.org/10.1371/journal.pone.0253153Welstead, M., et al. (2021a). Predictors of Mild Cognitive Impairment Stability, Progression, or Reversion in the Lothian Birth Cohort 1936. Journal of Alzheimer's Disease. https://doi.org/10.3233/JAD-201282Welstead, M., Luciano, M., Muniz-Terrera, G., Taylor, A. M., & Russ, T. C. (2021). Prevalence of Mild Cognitive Impairment in the Lothian Birth Cohort 1936. Alzheimer Disease & Associated Disorders. https://doi.org/10.1097/WAD.0000000000000433Wheater, E., et al. (2021). Birth weight is associated with brain tissue volumes seven decades later but not with MRI markers of brain ageing. NeuroImage: Clinical. https://doi.org/10.1016/j.nicl.2021.102776Yang, T., et al. (2021). Rare and Low-Frequency Exonic Variants and Gene-by-Smoking Interactions in Pulmonary Function. Scientific Reports. https://doi.org/10.1038/s41598-021-98120-7Zhang, J., et al. (2021). Relationship between inferior frontal sulcal hyperintensities on brain MRI, ageing and cerebral small vessel disease. Neurobiology of Aging. https://doi.org/10.1016/j.neurobiolaging.2021.06.013 2020Alonso, N., et al. (2020). Loss‐of‐function mutations in the ALPL gene presenting with adult onset osteoporosis and low serum concentrations of total alkaline phosphatase. Journal of Bone and Mineral Research. https://doi.org/10.1002/jbmr.3928Altschul, D. M., Starr, J., & Deary, I. J. (2020). Blood pressure and cognitive function across the eighth decade: a prospective study of the Lothian Birth Cohort of 1936. BMJ Open. https://doi.org/10.1136/bmjopen-2019-033990Altschul, D. M., & Deary, I. J. (2020). Playing analog games is associated with reduced declines in cognitive function: a 68 year longitudinal cohort study. The Journals of Gerontology: Series B. https://doi.org/10.1093/geronb/gbz149Aribisala, B. S., et al. (2020). Sleep and brain morphological changes in the eighth decade of life. Sleep Medicine. https://doi.org/10.1016/j.sleep.2019.07.015Armstrong, N. J., et al. (2020). Common Genetic Variation Indicates Separate Causes for Periventricular and Deep White Matter Hyperintensities. Stroke. https://doi.org/10.1161/STROKEAHA.119.027544Ballerini, L., et al. (2020). Computational quantification of brain perivascular space morphologies: Associations with vascular risk factors and white matter hyperintensities: A study in the Lothian Birth Cohort 1936. Neuroimage Clinical. https://doi.org/10.1016/j.nicl.2019.102120Ballerini, L., et al. (2020). Quantitative Measurements of Enlarged Perivascular Spaces in the Brain are Associated with Retinal Microvascular Parameters in Older Community-Dwelling Subjects. Cerebral Circulation—Cognition and Behavior. https://doi.org/10.1016/j.cccb.2020.100002Beange, I., et al. (2020). Using a knowledge exchange event to assess study participants’ attitudes to research in a rapidly evolving research context. Wellcome Open Research. https://doi.org/10.12688/wellcomeopenres.15651.1Beaudet, G., et al. (2020). Age-related changes of Peak width Skeletonized Mean Diffusivity (PSMD) across the adult life span: A multi-cohort study. Frontiers in Psychiatry. https://doi.org/10.3389/fpsyt.2020.00342Biton, A., et al. (2020). Polygenic Architecture of Human Neuroanatomical Diversity. Cerebral Cortex. https://doi.org/10.1093/cercor/bhz241Cadar, D., Robitaille, A., Pattie, A., Deary, I. J., & Muniz-Terrera, G. (2020). The long arm of childhood intelligence on terminal decline: Evidence from the Lothian Birth Cohort 1921. Psychology and Aging. https://doi.org/10.1037/pag0000477Colicino, E., et al. (2020). Blood DNA methylation sites predict death risk in a longitudinal study of 12,300 individuals. Aging. https://doi.org/10.18632/aging.103408Corley, J. (2020). Adherence to the MIND diet is associated with 12-year all-cause mortality in older adults. Public Health Nutrition. https://doi.org/10.1017/S1368980020002979Corley, J., et al. (2020). Dietary patterns, cognitive function, and structural neuroimaging measures of brain aging. Experimental Gerontology. https://doi.org/10.1016/j.exger.2020.111117Corley, J., & Deary, I. (2020). Dietary patterns and trajectories of global and domain-specific cognitive decline in the Lothian Birth Cohort 1936. British Journal of Nutrition. https://doi.org/10.1017/S0007114520005139Erzurumluoglu, A. M., et al. (2020). Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci. Molecular Psychiatry. https://doi.org/10.1038/s41380-018-0313-0Fawcett, K. A., et al. (2020). Variants associated with HHIP expression have sex-differential effects on lung function. Wellcome Open Research. https://doi.org/10.12688/wellcomeopenres.15846.1Fuentes, L. de las, et al. (2020). Gene-educational attainment interactions in a multi-ancestry genome-wide meta-analysis identify novel blood pressure loci. Molecular Psychiatry. https://doi.org/10.1038/s41380-020-0719-3Gale, C., Ritchie, S. J., Starr, J. M., & Deary, I. J. (2020). Physical frailty and decline in general and specific cognitive abilities: the Lothian Birth Cohort 1936. Journal of Epidemiology and Community Health. https://doi.org/10.1136/jech-2019-213280Graham, E. K., et al. (2020). Trajectories of Big Five Personality Traits: A Coordinated Analysis of 16 Longitudinal Samples. European Journal of Personality. https://doi.org/10.1002/per.2259Graham, E. K., et al. (2020). Is Healthy Neuroticism Associated with Health Behaviors? A Coordinated Integrative Data Analysis. Collabra: Psychology. https://doi.org/10.1525/collabra.266Grasby, K. L., et al. (2020). The genetic architecture of the human cerebral cortex. Science. https://doi.org/10.1126/science.aay6690Harris, S. E., et al. (2020). Neurology-related protein biomarkers are associated with general fluid cognitive ability and brain volume in older age. Nature Communications. https://doi.org/10.1101/692459Hillary, R. F., et al. (2020). Multi-method genome and epigenome wide studies of inflammatory protein levels in healthy older adults. Genome Medicine.Hofer, E., et al. (2020). Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nature Communications. https://doi.org/10.1038/s41467-020-18367-yLi, S., et al. (2020). Exploratory analysis of age and sex dependent DNA methylation patterns on the X-chromosome in whole blood samples. Genome Medicine. https://doi.org/10.1186/s13073-020-00736-3Lund, J. B, et al. (2020). Weighted gene co-regulation network analysis (WGCNA) of promoter DNA methylation on all-cause mortality in old-aged birth cohorts finds modules of high-risk associated biomarkers. The Journals of Gerontology: Series A. https://doi.org/10.1093/gerona/glaa066Lund, J. B., et al. (2020). Age-dependent DNA methylation patterns on the Y chromosome in elderly males. Aging Cell. https://doi.org/10.1111/acel.12907Ma, J., et al. (2020). Whole blood DNA methylation signatures of diet are associated with cardiovascular disease risk factors and all-cause mortality. Circulation: Genomic and Precision Medicine. https://doi.org/10.1161/CIRCGEN.119.002766Knol, M. J., et al. (2020). Association of common genetic variants with brain microbleeds: a genome-wide association study. Neurology. https://doi.org/10.1212/WNL.0000000000010852McLachlan, K. J. J., et al. (2020). Attitudes to ageing, biomarkers of ageing and mortality: the Lothian Birth Cohort 1936. Journal of Epidemiology and Community Health. https://doi.org/10.1136/jech-2019-213462Moodie, J. E., et al. (2020). Fluctuating asymmetry in brain structure and general intelligence in 73-year-olds. Intelligence. https://doi.org/10.1016/j.intell.2019.101407Okely, J. A., et al. (2020). Change in Physical Activity, Sleep Quality, and Psychosocial Variables during COVID-19 Lockdown: Evidence from the Lothian Birth Cohort 1936. International Journal of Environmental Research and Public Health. https://doi.org/10.3390/ijerph18010210Okely, J. A., & Deary, I. J. (2020). Associations Between Declining Physical and Cognitive Functions in the Lothian Birth Cohort 1936. The Journals of Gerontology: Series A. https://doi.org/10.1093/gerona/glaa023Parker, N., et al. (2020). Corticosteroids and Regional Variations in Thickness of the Human Cerebral Cortex across the Lifespan. Cerebral Cortex. https://doi.org/10.1093/cercor/bhz108Praveen, S., et al. (2020). Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nature Genetics. https://doi.org/10.1038/s41588-020-00713-xRitchie, S. J., et al. (2020). Polygenic predictors of age-related decline in cognitive ability. Molecular Psychiatry. https://doi.org/10.1038/s41380-019-0372-xSargurupremraj, M., et al. (2020). Cerebral small vessel disease genomics and its implications across the lifespan. Nature Communications. https://doi.org/10.1038/s41467-020-19111-2Seeboth, A., et al. (2020). DNA methylation outlier burden, health, and ageing in Generation Scotland and the Lothian Birth Cohorts of 1921 and 1936. Clinical Epigenetics. https://doi.org/10.1186/s13148-020-00838-0Shin, J., et al. (2020). Global and Regional Development of the Human Cerebral Cortex: Molecular Architecture and Occupational Aptitudes. Cerebral Cortex. https://doi.org/10.1093/cercor/bhaa035Sibbett, R. A., et al. (2020). DNA methylation-based measures of accelerated biological ageing and the risk of dementia in the oldest-old: a study of the Lothian Birth Cohort 1921. BMC Psychiatry. https://doi.org/10.1186/s12888-020-2469-9Stevenson, A. J., et al. (2020). Characterisation of an inflammation-related epigenetic score and its association with cognitive ability. Clinical Epigenetics. https://doi.org/10.1186/s13148-020-00903-8Taylor, A. M., Ritchie, S. J., Madden, C., & Deary, I. J. (2020). Associations between Brief Resilience Scale scores and ageing-related domains in the Lothian Birth Cohort 1936. Psychology and Aging. https://doi.org/10.1037/pag0000419Toombs, J., et al. (2020). Generation of twenty four induced pluripotent stem cell lines from twenty four members of the Lothian 4 Birth Cohort 1936. Stem Cell Research. https://doi.org/10.1016/j.scr.2020.101851Trejo Banos, D., et al. (2020). Bayesian reassessment of the epigenetic architecture of complex traits. Nature Communications. https://doi.org/10.1038/s41467-020-16520-1Turiano, N. A., et al. (2020). Is Healthy Neuroticism Associated with Longevity? A Coordinated Integrative Data Analysis. Collabra: Psychology. https://doi.org/10.1525/collabra.268Valdés Hernández, M. del C., et al. (2020). Perivascular spaces in the centrum semiovale at the beginning of the 8th decade of life: effect on cognition and associations with mineral deposition. Brain Imaging and Behavior. https://doi.org/10.1007/s11682-019-00128-1Welstead, M., et al. (2020). Inflammation as a risk factor for the development of frailty in the Lothian Birth Cohort 1936. Experimental Gerontology. https://doi.org/10.1016/j.exger.2020.111055Westerman, K., et al. (2020). Epigenomic Assessment of Cardiovascular Disease Risk and Interactions With Traditional Risk Metrics. JAHA. https://doi.org/10.1161/JAHA.119.015299Weston, S. J., et al. (2020). Is Healthy Neuroticism Associated with Chronic Conditions? A Coordinated Integrative Data Analysis. Collabra: Psychology. https://doi.org/10.1525/collabra.267Wragg, D., et al. (2020). Using regulatory variants to detect gene–gene interactions identifies networks of genes linked to cell immortalisation. Nature Communications. https://doi.org/10.1038/s41467-019-13762-6Wu, Y., et al. (2020). Promoter-anchored chromatin interactions predicted from genetic analysis of epigenomic data. Nature Communications. https://doi.org/10.1038/s41467-020-15587-0 2019Bateson, M., et al. (2019). Smoking does not accelerate leucocyte telomere attrition: a meta-analysis of 18 longitudinal cohorts. Royal Society Open Science. https://doi.org/10.1098/rsos.190420Bentley, A. R., et al. (2019). Multi-ancestry genome-wide gene–smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids. Nature Genetics. https://doi.org/10.1038/s41588-019-0378-yBermingham, M. L., et al. (2019). Identification of novel differentially methylated sites with potential as clinical predictors of impaired respiratory function and COPD. EBioMedicine. https://doi.org/10.1016/j.ebiom.2019.03.072Booth, T., et al. (2019). Reaction time variability and brain white matter integrity. Neuropsychology. https://doi.org/10.1037/neu0000483Brett, C. E., Dykiert, D., Starr, J. M., & Deary, I. J. (2019). Predicting change in quality of life from age 79 to 90 in the Lothian Birth Cohort 1921. Quality of Life Research. https://doi.org/10.1007/s11136-018-2056-4Chauhan, G., et al. (2019). Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting. Neurology. https://doi.org/10.1212/WNL.0000000000006851Cherrie, M., Shortt, N., Ward Thompson, C., Deary, I., & Pearce, J. (2019). Association between the activity space exposure to parks in childhood and adolescence and cognitive aging in later life. IJERPH. https://doi.org/10.3390/ijerph16040632Chundru, V. K., et al. (2019). Examining the Impact of Imputation Errors on Fine-Mapping Using DNA Methylation QTL as a Model Trait. Genetics. https://doi.org/10.1534/genetics.118.301861Clark, D. W., et al. (2019). Associations of autozygosity with a broad range of human phenotypes. Nature Communications. https://doi.org/10.1038/s41467-019-12283-6Corley, J., et al. (2019). Epigenetic signatures of smoking associate with cognitive function, brain structure, and mental and physical health outcomes in the Lothian Birth Cohort 1936. Translational Psychiatry. https://doi.org/10.1038/s41398-019-0576-5Corley, J., Shivappa, N., Hébert, J. R., Starr, J. M., & Deary, I. J. (2019). Associations between dietary inflammatory index scores and inflammatory biomarkers among older adults in the Lothian Birth Cohort 1936 study. The Journal of Nutrition, Health and Aging. https://doi.org/10.1007/s12603-019-1221-yCox, S. R., et al. (2019). Sleep and cognitive aging in the eighth decade of life. Sleep. https://doi.org/10.1093/sleep/zsz019Čukić, I., et al. (2019). Cross-sectional associations between personality traits and device-based measures of step count and sedentary behaviour in older age: the Lothian Birth Cohort 1936. BMC Geriatrics. https://doi.org/10.1186/s12877-019-1328-3de Vries, P. S., et al. (2019). Multiancestry genome-wide association study of lipid levels incorporating gene-alcohol interactions. American Journal of Epidemiology. https://doi.org/10.1093/aje/kwz005Deary, I. J., et al. (2019). Brain peak width of skeletonized mean diffusivity (PSMD) and cognitive function in later life. Frontiers Psychiatry. https://doi.org/10.3389/fpsyt.2019.00524Fawns-Ritchie, C., Davies, G., Hagenaars, S. P., & Deary, I. J. (2019). Genetic Contributions to Health Literacy. Twin Research and Human Genetics. https://doi.org/10.1017/thg.2019.28Halachev, M., et al. (2019). Increased ultra-rare variant load in an isolated Scottish population impacts exonic and regulatory regions. PLoS Genetics. https://doi.org/10.1371/journal.pgen.1008480Hamilton, O. K. L., et al. (2019). An epigenetic score for BMI based on DNA methylation correlates with poor physical health and major disease in the Lothian Birth Cohort. International Journal of Obesity. https://doi.org/10.1038/s41366-018-0262-3Hill, W. D., et al. (2019). A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence. Molecular Psychiatry. https://doi.org/10.1038/s41380-017-0001-5Hillary, R. F., et al. (2019). Genome and epigenome wide studies of neurological protein biomarkers in the Lothian Birth Cohort 1936. Nature Communications. https://doi.org/10.1038/s41467-019-11177-xHillary, R. F., et al. (2019). An epigenetic predictor of death captures multi-modal measures of brain health. Molecular Psychiatry. https://doi.org/10.1101/703504Humphreys, C. A., et al. (2019). A protocol for precise comparisons of small vessel disease lesions between ex vivo magnetic resonance imaging and histopathology. International Journal of Stroke. https://doi.org/10.1177/1747493018799962Imboden, M., et al. (2019). Epigenome-wide association study of lung function level and its change. European Respiratory Journal. https://doi.org/10.1183/13993003.00457-2019Jia, T., et al. (2019). Epigenome-wide meta-analysis of blood DNA methylation and its association with subcortical volumes: findings from the ENIGMA Epigenetics Working Group. Molecular Psychiatry. https://doi.org/10.1101/460444Kilpeläinen, T. O., et al. (2019). Multi-ancestry study of blood lipid levels identifies four loci interacting with physical activity. Nature Communications. https://doi.org/10.1038/s41467-018-08008-wKraja, A. T., et al. (2019). Associations of Mitochondrial and Nuclear Mitochondrial Variants and Genes with Seven Metabolic Traits. The American Journal of Human Genetics. https://doi.org/10.1016/j.ajhg.2018.12.001Lam, M., et al. (2019). Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways. American Journal of Human Genetics. https://doi.org/10.1016/j.ajhg.2019.06.012Law, P. J., et al. (2019). Association analyses identify 31 new risk loci for colorectal cancer susceptibility. Nature Communications. https://doi.org/10.1038/s41467-019-09775-wLee, Y., et al. (2019). Epigenome-wide association study of leukocyte telomere length. Aging. https://doi.org/10.18632/aging.102230Lu, A. T., et al. (2019). DNA methylation-based estimator of telomere length. Aging. https://doi.org/10.18632/aging.102173Lund, J. B., et al. (2019). DNA methylome profiling of all-cause mortality in comparison with age-associated methylation patterns. Clinical Epigenetics. https://doi.org/10.1186/s13148-019-0622-4MacPherson, S. E., Allerhand, M., Cox, S. R., & Deary, I. J. (2019). Individual differences in cognitive processes underlying Trail Making Test-B performance in old age: The Lothian Birth Cohort 1936. Intelligence. https://doi.org/10.1016/j.intell.2019.04.001Marini, S., et al. (2019). Association of Apolipoprotein E With Intracerebral Hemorrhage Risk by Race/Ethnicity: A Meta-analysis. JAMA Neurology. https://doi.org/10.1001/jamaneurol.2018.4519Marioni, R. E., et al. (2019). Tracking the Epigenetic Clock Across the Human Life Course: A Meta-analysis of Longitudinal Cohort Data. The Journals of Gerontology: Series A. https://doi.org/10.1093/gerona/gly060McGrory, S., et al. (2019). Retinal microvasculature and cerebral small vessel disease in the Lothian Birth Cohort 1936 and Mild Stroke Study. Scientific Report. https://doi.org/10.1038/s41598-019-42534-xMcGrory, S., et al. (2019). Retinal microvascular features and cognitive change in the Lothian-Birth Cohort 1936. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring. https://doi.org/10.1016/j.dadm.2019.04.012Muñoz Maniega, S., et al. (2019). Spatial Gradient of Microstructural Changes in Normal-Appearing White Matter in Tracts Affected by White Matter Hyperintensities in Older Age. Frontiers Neurology. https://doi.org/10.3389/fneur.2019.00784Okely, J. A., Akeroyd, M. A., Allerhand, M., Starr, J. M., & Deary, I. J. (2019). Longitudinal associations between hearing loss and general cognitive ability: The Lothian Birth Cohort 1936. Psychology and Aging. https://doi.org/10.1037/pag0000385Okely, J. A., et al. (2019). Positive and negative well-being and objectively measured sedentary behaviour in older adults: evidence from three cohorts. BMC Geriatrics. https://doi.org/10.1186/s12877-019-1026-1Okely, J. A., & Deary, I. J. (2019). Longitudinal Associations Between Loneliness and Cognitive Ability in the Lothian Birth Cohort 1936. The Journals of Gerontology: Series B. https://doi.org/10.1093/geronb/gby086Ortiz-Ramón, R., et al. (2019). Identification of the presence of ischaemic stroke lesions by means of texture analysis on brain magnetic resonance images. Computerized Medical Imaging and Graphics. https://doi.org/10.1016/j.compmedimag.2019.02.006Palmer, V. J., et al. (2019). What Do Older People Do When Sitting and Why? Implications for Decreasing Sedentary Behavior. The Gerontologist. https://doi.org/10.1093/geront/gny020Prendergast, J. G. D., et al. (2019). Linked Mutations at Adjacent Nucleotides Have Shaped Human Population Differentiation and Protein Evolution. Genome Biology and Evolution. https://doi.org/10.1093/gbe/evz014Robertson, N. A., et al. (2019). Age-related clonal haemopoiesis is associated with increased epigenetic age. Current Biology. https://doi.org/10.1016/j.cub.2019.07.011Satizabal, C. L., et al. (2019). Genetic architecture of subcortical brain structures in 38,851 individuals. Nat. Genet. https://doi.org/10.1038/s41588-019-0511-ySikdar, S., et al. (2019). Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking. Epigenomics. https://doi.org/10.2217/epi-2019-0066Stevenson, A. J., et al. (2019). Childhood intelligence attenuates the association between biological ageing and health outcomes in later life. Translational Psychiatry. https://doi.org/10.1038/s41398-019-0657-5Veluchamy, A., et al. (2019). Novel Genetic Locus Influencing Retinal Venular Tortuosity Is Also Associated With Risk of Coronary Artery Disease. Arterioscler. Thromb. Vasc. Biol. https://doi.org/10.1161/ATVBAHA.119.312552Zhang, F., et al. (2019). OSCA: a tool for omic-data-based complex trait analysis. Genome Biology. https://doi.org/10.1186/s13059-019-1718-zZhang, Q., et al. (2019). Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med 11, 54. https://doi.org/10.1186/s13073-019-0667-1 2018Aichele, S., et al. (2018). Fluid intelligence predicts change in depressive symptoms in later life: The Lothian Birth Cohort 1936. Psychological Science. https://doi.org/10.1177/0956797618804501Alhusaini, S., et al. (2018). Association between carotid atheroma and cerebral cortex structure at age 73 years: Carotid Disease. Annals of Neurology. https://doi.org/10.1002/ana.25324Alloza, C., et al. (2018). Polygenic risk score for schizophrenia and structural brain connectivity in older age: A longitudinal connectome and tractography study. NeuroImage. https://doi.org/10.1016/j.neuroimage.2018.08.075Altschul, D. M., Starr, J. M., & Deary, I. J. (2018). Cognitive function in early and later life is associated with blood glucose in older individuals: analysis of the Lothian Birth Cohort of 1936. Diabetologia. https://doi.org/10.1007/s00125-018-4645-8Anblagan, D., et al. (2018). Coupled changes in hippocampal structure and cognitive ability in later life. Brain and Behavior. https://doi.org/10.1002/brb3.838Aslibekyan, S., et al. (2018). Association of methylation signals with incident coronary heart disease in an epigenome-wide assessment of circulating tumor necrosis factor α. JAMA Cardiology. https://doi.org/10.1001/jamacardio.2018.0510Chastin, S. F. M., et al. (2018). Systematic comparative validation of self-report measures of sedentary time against an objective measure of postural sitting (activPAL). International Journal Behavioral Nutrition and Physical Activity. https://doi.org/10.1186/s12966-018-0652-xCherrie, M. P. C., et al. (2018). Green space and cognitive ageing: A retrospective life course analysis in the Lothian Birth Cohort 1936. Social Science & Medicine. https://doi.org/10.1016/j.socscimed.2017.10.038Cole, J. H., et al. (2018). Brain age predicts mortality. Molecular Psychiatry. https://doi.org/10.1038/mp.2017.62Corley, J., Cox, S. R., & Deary, I. J. (2018). Healthy cognitive ageing in the Lothian Birth Cohort studies: marginal gains not magic bullet. Psychological Medicine. https://doi.org/10.1017/S0033291717001489Corre, T., et al. (2018). Genome-wide meta-analysis unravels interactions between magnesium homeostasis and metabolic phenotypes. JASN. https://doi.org/10.1681/ASN.2017030267Cox, S. R., et al. (2018). Longitudinal serum S100β and brain aging in the Lothian Birth Cohort 1936. Neurobiology of Aging. https://doi.org/10.1016/j.neurobiolaging.2018.05.029Cox, S. R., et al. (2018). Brain cortical characteristics of lifetime cognitive ageing. Brain Structure and Function. https://doi.org/10.1007/s00429-017-1505-0Crook, Z., et al. (2018). Apolipoprotein E genotype does not moderate the associations of depressive symptoms, neuroticism and allostatic load with cognitive ability and cognitive aging in the Lothian Birth Cohort 1936. PLoS ONE. https://doi.org/10.1371/journal.pone.0192604Čukić, I., et al. (2018). Cognitive ability does not predict objectively measured sedentary behavior: Evidence from three older cohorts. Psychology and Aging. https://doi.org/10.1037/pag0000221Dall, P. M., et al. (2018). Characteristics of a Protocol to Collect Objective Physical Activity/Sedentary Behavior Data in a Large Study: Seniors USP (Understanding Sedentary Patterns). Journal for the Measurement of Physical Behaviour. https://doi.org/10.1123/jmpb.2017-0004Davies, G., et al. (2018). Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications. https://doi.org/10.1038/s41467-018-04362-xFawns-Ritchie, C., et al. (2018). Role of cognitive ability in the association between functional health literacy and mortality in the Lothian Birth Cohort 1936: a prospective cohort study. BMJ Open. https://doi.org/10.1136/bmjopen-2018-022502Feitosa, M.F., et al. (2018). Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries. PLoS ONE. https://doi.org/10.1371/journal.pone.0198166Franceschini, N., et al. (2018). GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes. Nature Communications. https://doi.org/10.1038/s41467-018-07340-5Gale, C.R., et al. (2018a). Attitudes to ageing and objectively-measured sedentary and walking behaviour in older people: The Lothian Birth Cohort 1936. PLoS ONE. https://doi.org/10.1371/journal.pone.0197357Gale, C.R., et al. (2018b). The epigenetic clock and objectively measured sedentary and walking behavior in older adults: the Lothian Birth Cohort 1936. Clinical Epigenetics. https://doi.org/10.1186/s13148-017-0438-zGale, C.R., et al. (2018c). DNA methylation and the epigenetic clock in relation to physical frailty in older people: the Lothian Birth Cohort 1936. Clinical Epigenetics. https://doi.org/10.1186/s13148-018-0538-4Hagenaars, S.P., et al. (2018). Genetic contributions to Trail Making Test performance in UK Biobank. Molecular Psychiatry. https://doi.org/10.1038/mp.2017.189He, Y., et al. (2018). Exploring causality in the association between circulating 25-hydroxyvitamin D and colorectal cancer risk: a large Mendelian randomisation study. BMC. https://doi.org/10.1186/s12916-018-1119-2Jackson, V.E., et al. (2018a). Meta-analysis of exome array data identifies six novel genetic loci for lung function. Wellcome Open Research. https://doi.org/10.12688/wellcomeopenres.12583.3Jackson, V.E., et al. (2018b). Meta-analysis of exome array data identifies six novel genetic loci for lung function. Wellcome Open Research. https://doi.org/10.12688/wellcomeopenres.12583.1Jian, X., et al. (2018). Exome Chip Analysis Identifies Low-Frequency and Rare Variants in MRPL38 for White Matter Hyperintensities on Brain Magnetic Resonance Imaging. Stroke. https://doi.org/10.1161/STROKEAHA.118.020689Laidlaw, K., et al. (2018). Development of a short form of the Attitudes to Ageing Questionnaire (AAQ): Development of AAQ - short form. International Journal of Geriatric Psychiatry. https://doi.org/10.1002/gps.4687Laukka, E.J., et al. (2018). Effects of between-person differences and within-person changes in symptoms of anxiety and depression on older age cognitive performance. Psychological Medicine. https://doi.org/10.1017/S0033291717002896Lewis, G.J., et al. (2018). Widespread associations between trait conscientiousness and thickness of brain cortical regions. NeuroImage. https://doi.org/10.1016/j.neuroimage.2018.04.033Ligthart, S., et al. (2018). Genome Analyses of >200,000 Individuals Identify 58 Loci for Chronic Inflammation and Highlight Pathways that Link Inflammation and Complex Disorders. The American Journal of Human Genetics. https://doi.org/10.1016/j.ajhg.2018.09.009Liu, C., et al. (2018). A DNA methylation biomarker of alcohol consumption. Molecular Psychiatry. https://doi.org/10.1038/mp.2016.192Lu, A.T., et al. (2018). GWAS of epigenetic aging rates in blood reveals a critical role for TERT. Nature Communications. https://doi.org/10.1038/s41467-017-02697-5Luciano, M., et al. (2018). The influence of dyslexia candidate genes on reading skill in old age. Behaviour Genetics. https://doi.org/10.1007/s10519-018-9913-3Marioni, R.E., et al. (2018). Association of facial ageing with DNA methylation and epigenetic age predictions. Clinical Epigenetics. https://doi.org/10.1186/s13148-018-0572-2Marioni, R.E., et al. (2018). Meta-analysis of epigenome-wide association studies of cognitive abilities. Molecular Psychiatry. https://doi.org/10.1038/s41380-017-0008-yMcCartney, D.L., et al. (2018). Epigenetic prediction of complex traits and death. Genome Biology. https://doi.org/10.1186/s13059-018-1514-1McGrory, S., et al. (2018). Towards Standardization of Quantitative Retinal Vascular Parameters: Comparison of SIVA and VAMPIRE Measurements in the Lothian Birth Cohort 1936. Translational Vision Science & Technology. https://doi.org/10.1167/tvst.7.2.12McRae, A.F., et al. (2018). Identification of 55,000 Replicated DNA Methylation QTL. Scientific Reports. https://doi.org/10.1038/s41598-018-35871-wPearce, J., et al. (2018). Life course of place: A longitudinal study of mental health and place. Transactions of the Institute of British Geographers. https://doi.org/10.1111/tran.12246Pinter, D., et al. (2018). Predictors of gait speed and its change over three years in community-dwelling older people. Aging. https://doi.org/10.18632/aging.101365Qi, T., et al. (2018). Identifying gene targets for brain-related traits using transcriptomic and methylomic data from blood. Nature Communications. https://doi.org/10.1038/s41467-018-04558-1Ritchie, S.J., et al. (2018). Brain structural differences between 73- and 92-year olds matched for childhood intelligence, social background, and intracranial volume. Neurobiology of Aging. https://doi.org/10.1016/j.neurobiolaging.2017.10.005Robitaille, A., et al. (2018). Transitions across cognitive states and death among older adults in relation to education: A multistate survival model using data from six longitudinal studies. Alzheimer’s & Dementia. https://doi.org/10.1016/j.jalz.2017.10.003Savage, J.E., et al., (2018). Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat Genet 50, 912–919. https://doi.org/10.1038/s41588-018-0152-6Savine, A.M., et al. (2018). DNA methylation and all-cause mortality in middle-aged and elderly Danish twins. Genes. https://doi.org/10.3390/genes9020078Sibbett, R.A., et al. (2018a). Physical fitness and dementia risk in the very old: a study of the Lothian Birth Cohort 1921. BMC Psychiatry. https://doi.org/10.1186/s12888-018-1851-3Sibbett, R.A., et al. (2018b). Does incipient dementia explain normal cognitive decline determinants? Lothian birth cohort 1921. Psychology and Aging. https://doi.org/10.1037/pag0000241Stevenson, A.J., et al. (2018). Trajectories of inflammatory biomarkers over the eighth decade and their associations with immune cell profiles and epigenetic ageing. Clinical Epigenetics. https://doi.org/10.1186/s13148-018-0585-xStory Jovanova, O., et al. (2018). DNA Methylation Signatures of Depressive Symptoms in Middle-aged and Elderly Persons: Meta-analysis of Multiethnic Epigenome-wide Studies. JAMA Psychiatry. https://doi.org/10.1001/jamapsychiatry.2018.1725Sung, Y.J., et al. (2018). A Large-Scale Multi-ancestry Genome-wide Study Accounting for Smoking Behavior Identifies Multiple Significant Loci for Blood Pressure. The American Journal of Human Genetics. https://doi.org/10.1016/j.ajhg.2018.01.015Taylor, A.M., et al. (2018). Cohort Profile Update: The Lothian Birth Cohorts of 1921 and 1936. International Journal of Epidemiology. https://doi.org/10.1093/ije/dyy022Teng, S., et al. (2018). Rare disruptive variants in the DISC1 Interactome and Regulome: association with cognitive ability and schizophrenia. Molecular Psychiatry. https://doi.org/10.1038/mp.2017.115Teumer, A., et al. (2018). Genome-wide analyses identify a role for SLC17A4 and AADAT in thyroid hormone regulation. Nature Communications. https://doi.org/10.1038/s41467-018-06356-1Turcot, V., et al. (2018). Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nature Genetics. https://doi.org/10.1038/s41588-017-0011-xVojinovic, D., et al. (2018). Genome-wide association study of 23,500 individuals identifies 7 loci associated with brain ventricular volume. Nature Communications. https://doi.org/10.1038/s41467-018-06234-wWang, Y., et al. (2018). Epigenetic influences on aging: a longitudinal genome-wide methylation study in old Swedish twins. Epigenetics. https://doi.org/10.1080/15592294.2018.1526028Ward-Caviness, C.K., et al. (2018). DNA methylation age is associated with an altered hemostatic profile in a multiethnic meta-analysis. Blood. https://doi.org/10.1182/blood-2018-02-831347Wiseman, S.J., et al. (2018). Cognitive abilities, brain white matter hyperintensity volume, and structural network connectivity in older age: Cognitive Abilities and Connectivity in Healthy Ageing. Human Brain Mapping. https://doi.org/10.1002/hbm.23857Wu, Y., et al. (2018). Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits. Nature Communications. https://doi.org/10.1038/s41467-018-03371-0Zhang, Q., et al. (2018). Genotype effects contribute to variation in longitudinal methylome patterns in older people. Genome Medicine. https://doi.org/10.1186/s13073-018-0585-72017Aschard, H., Tobin, M.D., Hancock, D.B., Skurnik, D., Sood, A., et al., (2017). Evidence for large-scale gene-by-smoking interaction effects on pulmonary function. Int. J. Epidemiol. dyw318. https://doi.org/10.1093/ije/dyw318Ben-Avraham, D., Karasik, D., Verghese, J., Lunetta, K.L., Smith, J.A., et al., (2017). The complex genetics of gait speed: genome-wide meta-analysis approach. aging 9, 209–246. https://doi.org/10.18632/aging.101151Corre, T., Olinger, E., Harris, S.E., Traglia, M., Ulivi, S., et al., (2017). Common variants in CLDN14 are associated with differential excretion of magnesium over calcium in urine. Pflugers Arch - Eur J Physiol 469, 91–103. https://doi.org/10.1007/s00424-016-1913-7Cox, S.R., Ritchie, S.J., Dickie, D.A., Pattie, A., Royle, N.A., et al., (2017a). Interaction of APOE e4 and poor glycemic control predicts white matter hyperintensity growth from 73 to 76. Neurobiology of Aging 54, 54–58. https://doi.org/10.1016/j.neurobiolaging.2017.02.014Cox, S.R., Valdés Hernández, M. del C., Kim, J., Royle, N.A., MacPherson, S.E., et al., (2017b). Associations between hippocampal morphology, diffusion characteristics, and salivary cortisol in older men. Psychoneuroendocrinology 78, 151–158. https://doi.org/10.1016/j.psyneuen.2017.01.027de Vries, P.S., Sabater-Lleal, M., Chasman, D.I., Trompet, S., Ahluwalia, T.S., et al., (2017). Comparison of HapMap and 1000 Genomes Reference Panels in a Large-Scale Genome-Wide Association Study. PLoS ONE 12, e0167742. https://doi.org/10.1371/journal.pone.0167742del C. Valdés Hernández, M., Kyle, J., Allan, J., Allerhand, M., Clark, H., et al., (2017). Dietary iodine exposure and brain structures and cognition in older people. Exploratory analysis in the Lothian Birth Cohort 1936. J Nutr Health Aging 21, 971–979. https://doi.org/10.1007/s12603-017-0954-8Fernández, E., Collins, M.O., Frank, R.A.W., Zhu, F., Kopanitsa, M.V., et al., (2017). Arc Requires PSD95 for Assembly into Postsynaptic Complexes Involved with Neural Dysfunction and Intelligence. Cell Reports 21, 679–691. https://doi.org/10.1016/j.celrep.2017.09.045Gale, C.R., Ritchie, S.J., Cooper, C., Starr, J.M., Deary, I.J., (2017). Cognitive Ability in Late Life and Onset of Physical Frailty: The Lothian Birth Cohort 1936. J Am Geriatr Soc 65, 1289–1295. https://doi.org/10.1111/jgs.14787Gow, A.J., Pattie, A., Deary, I.J., (2017). Lifecourse Activity Participation From Early, Mid, and Later Adulthood as Determinants of Cognitive Aging: The Lothian Birth Cohort 1921. GERONB 72, 25–37. https://doi.org/10.1093/geronb/gbw124Guadalupe, T., Mathias, S.R., vanErp, T.G.M., Whelan, C.D., Zwiers, M.P., et al., (2017). Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging and Behavior 11, 1497–1514. https://doi.org/10.1007/s11682-016-9629-zHägg, S., Zhan, Y., Karlsson, R., Gerritsen, L., Ploner, A., et al., (2017). Short telomere length is associated with impaired cognitive performance in European ancestry cohorts. Transl Psychiatry 7, e1100–e1100. https://doi.org/10.1038/tp.2017.73Harris, S.E., Riggio, V., Evenden, L., Gilchrist, T., McCafferty, S., et al., (2017). Age-related gene expression changes, and transcriptome wide association study of physical and cognitive aging traits, in the Lothian Birth Cohort 1936. aging 9, 2489–2503. https://doi.org/10.18632/aging.101333Hedman, Å.K., Mendelson, M.M., Marioni, R.E., Gustafsson, S., Joehanes, R., et al., (2017). Epigenetic Patterns in Blood Associated With Lipid Traits Predict Incident Coronary Heart Disease Events and Are Enriched for Results From Genome-Wide Association Studies. Circ Cardiovasc Genet 10. https://doi.org/10.1161/CIRCGENETICS.116.001487Hibar, D.P., Adams, H.H.H., Jahanshad, N., Chauhan, G., Stein, J.L., et al., (2017). Novel genetic loci associated with hippocampal volume. Nat Commun 8, 13624. https://doi.org/10.1038/ncomms13624Hoffman, P., Cox, S.R., Dykiert, D., Muñoz Maniega, S., Valdés Hernández, M.C., et al., (2017). Brain grey and white matter predictors of verbal ability traits in older age: The Lothian Birth Cohort 1936. NeuroImage 156, 394–402. https://doi.org/10.1016/j.neuroimage.2017.05.052Iveson, M.H., Deary, I.J., (2017). Intergenerational social mobility and subjective wellbeing in later life. Social Science & Medicine 188, 11–20. https://doi.org/10.1016/j.socscimed.2017.06.038Job, D.E., Dickie, D.A., Rodriguez, D., Robson, A., Danso, S., et al., (2017). A brain imaging repository of normal structural MRI across the life course: Brain Images of Normal Subjects (BRAINS). NeuroImage 144, 299–304. https://doi.org/10.1016/j.neuroimage.2016.01.027Karlsson Linnér, R., Marioni, R.E., Rietveld, C.A., Simpkin, A.J., Davies, N.M., et al., (2017). An epigenome-wide association study meta-analysis of educational attainment. Mol Psychiatry 22, 1680–1690. https://doi.org/10.1038/mp.2017.210Kraja, A.T., Cook, J.P., Warren, H.R., Surendran, P., Liu, C., et al., (2017). New Blood Pressure–Associated Loci Identified in Meta-Analyses of 475 000 Individuals. Circ Cardiovasc Genet 10. https://doi.org/10.1161/CIRCGENETICS.117.001778Lam, M., Trampush, J.W., Yu, J., Knowles, E., Davies, G., et al., (2017). Large-Scale Cognitive GWAS Meta-Analysis Reveals Tissue-Specific Neural Expression and Potential Nootropic Drug Targets. Cell Reports 21, 2597–2613. https://doi.org/10.1016/j.celrep.2017.11.028Li, S., Christiansen, L., Christensen, K., Kruse, T.A., Redmond, P., et al., (2017). Identification, replication and characterization of epigenetic remodelling in the aging genome: a cross population analysis. Sci Rep 7, 8183. https://doi.org/10.1038/s41598-017-08346-7Liu, D.J., Peloso, G.M., Yu, H., Butterworth, A.S., Wang, X., et al., (2017). Exome-wide association study of plasma lipids in >300,000 individuals. Nat Genet 49, 1758–1766. https://doi.org/10.1038/ng.3977Luciano, M., Corley, J., Cox, S.R., Valdés Hernández, M.C., Craig, L.C.A., et al., (2017). Mediterranean-type diet and brain structural change from 73 to 76 years in a Scottish cohort. Neurology 88, 449–455. https://doi.org/10.1212/WNL.0000000000003559MacPherson, S.E., Cox, S.R., Dickie, D.A., Karama, S., Starr, J.M., et al., (2017). Processing speed and the relationship between Trail Making Test-B performance, cortical thinning and white matter microstructure in older adults. Cortex 95, 92–103. https://doi.org/10.1016/j.cortex.2017.07.021Mandaviya, P.R., Joehanes, R., Aïssi, D., Kühnel, B., Marioni, R.E., et al., (2017). Genetically defined elevated homocysteine levels do not result in widespread changes of DNA methylation in leukocytes. PLoS ONE 12, e0182472. https://doi.org/10.1371/journal.pone.0182472Marouli, E., Graff, M., Medina-Gomez, C., Lo, K.S., Wood, A.R., et al., (2017). Rare and low-frequency coding variants alter human adult height. Nature 542, 186–190. https://doi.org/10.1038/nature21039McGrory, S., Taylor, A.M., Kirin, M., Corley, J., Pattie, A., et al., (2017). Retinal microvascular network geometry and cognitive abilities in community-dwelling older people: The Lothian Birth Cohort 1936 study. Br J Ophthalmol 101, 993–998. https://doi.org/10.1136/bjophthalmol-2016-309017Mendelson, M.M., Marioni, R.E., Joehanes, R., Liu, C., Hedman, Å.K., et al., (2017). Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian Randomization Approach. PLoS Med 14, e1002215. https://doi.org/10.1371/journal.pmed.1002215Mõttus, R., Marioni, R., Deary, I.J., (2017). Markers of Psychological Differences and Social and Health Inequalities: Possible Genetic and Phenotypic Overlaps: Potentially Overlapping Markers. J Pers 85, 104–117. https://doi.org/10.1111/jopy.12220Muñoz Maniega, S., Bastin, M., Deary, I., Wardlaw, J., Clayden, J., (2017). Reference Tracts and Generative Models for Brain White Matter Tractography. J. Imaging 4, 8. https://doi.org/10.3390/jimaging4010008Pinter, D., Ritchie, S.J., Doubal, F., Gattringer, T., Morris, Z., et al., (2017). Impact of small vessel disease in the brain on gait and balance. Sci Rep 7, 41637. https://doi.org/10.1038/srep41637Richard, M.A., Huan, T., Ligthart, S., Gondalia, R., Jhun, M.A., et al., (2017). DNA Methylation Analysis Identifies Loci for Blood Pressure Regulation. The American Journal of Human Genetics 101, 888–902. https://doi.org/10.1016/j.ajhg.2017.09.028Ritchie, S.J., Tucker-Drob, E.M., Cox, S.R., Dickie, D.A., del C. Valdés Hernández, M., et al., (2017). Risk and protective factors for structural brain ageing in the eighth decade of life. Brain Struct Funct 222, 3477–3490. https://doi.org/10.1007/s00429-017-1414-2Shaw, R., Čukić, I., Deary, I., Gale, C., Chastin, S., et al., (2017). The Influence of Neighbourhoods and the Social Environment on Sedentary Behaviour in Older Adults in Three Prospective Cohorts. IJERPH 14, 557. https://doi.org/10.3390/ijerph14060557Shaw, R.J., Čukić, I., Deary, I.J., Gale, C.R., Chastin, S.F., et al., (2017). Relationships between socioeconomic position and objectively measured sedentary behaviour in older adults in three prospective cohorts. BMJ Open 7, e016436. https://doi.org/10.1136/bmjopen-2017-016436Shenkin, S.D., Pernet, C., Nichols, T.E., Poline, J.-B., Matthews, P.M., et al., (2017). Improving data availability for brain image biobanking in healthy subjects: Practice-based suggestions from an international multidisciplinary working group. NeuroImage 153, 399–409. https://doi.org/10.1016/j.neuroimage.2017.02.030Sibbett, R.A., Russ, T.C., Deary, I.J., Starr, J.M., (2017a). Dementia ascertainment using existing data in UK longitudinal and cohort studies: a systematic review of methodology. BMC Psychiatry 17, 239. https://doi.org/10.1186/s12888-017-1401-4Sibbett, R.A., Russ, T.C., Deary, I.J., Starr, J.M., (2017b). Risk factors for dementia in the ninth decade of life and beyond: a study of the Lothian birth cohort 1921. BMC Psychiatry 17, 205. https://doi.org/10.1186/s12888-017-1366-3Smeland, O.B., Frei, O., Kauppi, K., Hill, W.D., Li, W., et al., (2017). Identification of Genetic Loci Jointly Influencing Schizophrenia Risk and the Cognitive Traits of Verbal-Numerical Reasoning, Reaction Time, and General Cognitive Function. JAMA Psychiatry 74, 1065. https://doi.org/10.1001/jamapsychiatry.2017.1986Sniekers, S., Stringer, S., Watanabe, K., Jansen, P.R., Coleman, J.R.I., et al., (2017). Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nat Genet 49, 1107–1112. https://doi.org/10.1038/ng.3869Taylor, A.M., Ritchie, S.J., Deary, I.J., (2017). Associations of intelligence across the life course with optimism and pessimism in older age. Intelligence 62, 79–88. https://doi.org/10.1016/j.intell.2017.03.002Thompson, P.M., Andreassen, O.A., Arias-Vasquez, A., Bearden, C.E., Boedhoe, P.S., et al., (2017). ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide. NeuroImage 145, 389–408. https://doi.org/10.1016/j.neuroimage.2015.11.057Trampush, J.W., Yang, M.L.Z., Yu, J., Knowles, E., Davies, G., et al., (2017). GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. Mol Psychiatry 22, 336–345. https://doi.org/10.1038/mp.2016.244Tzioras, M., Easter, J., Harris, S., McKenzie, C.-A., Smith, C., et al., (2017). Assessing amyloid-β, tau, and glial features in Lothian Birth Cohort 1936 participants post-mortem. Science Matters. https://discovery.dundee.ac.uk/ws/portalfiles/portal/33157405/Final_Published_Version.pdfValdés Hernández, M. del C., Cox, S.R., Kim, J., Royle, N.A., Muñoz Maniega, S., et al., (2017). Hippocampal morphology and cognitive functions in community-dwelling older people: the Lothian Birth Cohort 1936. Neurobiology of Aging 52, 1–11. https://doi.org/10.1016/j.neurobiolaging.2016.12.012Valdés Hernández, M.D.C., Chappell, F.M., Muñoz Maniega, S., Dickie, D.A., Royle, N.A., et al., (2017). Metric to quantify white matter damage on brain magnetic resonance images. Neuroradiology 59, 951–962. https://doi.org/10.1007/s00234-017-1892-1Wain, Louise V, Shrine, N., Artigas, M.S., Erzurumluoglu, A.M., Noyvert, B., et al., (2017). Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nat Genet 49, 416–425. https://doi.org/10.1038/ng.3787Wain, Louise V., Vaez, A., Jansen, R., Joehanes, R., van der Most, P.J., et al., (2017). Novel Blood Pressure Locus and Gene Discovery Using Genome-Wide Association Study and Expression Data Sets From Blood and the Kidney. Hypertension 70. https://doi.org/10.1161/HYPERTENSIONAHA.117.09438Wardlaw, J.M., Allerhand, M., Eadie, E., Thomas, A., Corley, J., et al., (2017). Carotid disease at age 73 and cognitive change from age 70 to 76 years: A longitudinal cohort study. J Cereb Blood Flow Metab 37, 3042–3052. https://doi.org/10.1177/0271678X16683693Warren, H.R., Evangelou, E., Cabrera, C.P., Gao, H., Ren, M., et al., (2017). Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet 49, 403–415. https://doi.org/10.1038/ng.3768 2016Adams, H.H.H., Hibar, D.P., Chouraki, V., Stein, J.L., Nyquist, P.A., et al., (2016). Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nat Neurosci 19, 1569–1582. https://doi.org/10.1038/nn.4398Anderson, C.D., Falcone, G.J., Phuah, C.-L., Radmanesh, F., Brouwers, H.B., et al., (2016). Genetic variants in CETP increase risk of intracerebral hemorrhage: CETP Genetic Variation and ICH. Ann Neurol. 80, 730–740. https://doi.org/10.1002/ana.24780Ballerini, L., Lovreglio, R., Hernández, M. del C.V., Gonzalez-Castro, V., Maniega, S.M., et al., (2016). Application of the Ordered Logit Model to Optimising Frangi Filter Parameters for Segmentation of Perivascular Spaces. Procedia Computer Science 90, 61–67. https://doi.org/10.1016/j.procs.2016.07.011Barban, N., Jansen, R., de Vlaming, R., Vaez, A., Mandemakers, J.J., et al., (2016). Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nat Genet 48, 1462–1472. https://doi.org/10.1038/ng.3698Broer, T., Pickersgill, M., Deary, I.J., (2016). The Movement of Research from the Laboratory to the Living Room: a Case Study of Public Engagement with Cognitive Science. Neuroethics 9, 159–171. https://doi.org/10.1007/s12152-016-9259-6Chami, N., Chen, M.-H., Slater, A.J., Eicher, J.D., Evangelou, E., et al., (2016). Exome Genotyping Identifies Pleiotropic Variants Associated with Red Blood Cell Traits. The American Journal of Human Genetics 99, 8–21. https://doi.org/10.1016/j.ajhg.2016.05.007Chen, B.H., Marioni, R.E., Colicino, E., Peters, M.J., Ward-Caviness, C.K., et al., (2016). DNA methylation-based measures of biological age: meta-analysis predicting time to death. aging 8, 1844–1865. https://doi.org/10.18632/aging.101020Clarke, T.-K., Lupton, M.K., Fernandez-Pujals, A.M., Starr, J., Davies, G., et al., (2016). Common polygenic risk for autism spectrum disorder (ASD) is associated with cognitive ability in the general population. Mol Psychiatry 21, 419–425. https://doi.org/10.1038/mp.2015.12Cox, S.R., Bak, T.H., Allerhand, M., Redmond, P., Starr, J.M., et al., (2016a). Bilingualism, social cognition and executive functions: A tale of chickens and eggs. Neuropsychologia 91, 299–306. https://doi.org/10.1016/j.neuropsychologia.2016.08.029Cox, S.R., Dickie, D.A., Ritchie, S.J., Karama, S., Pattie, A., et al., (2016b). Associations between education and brain structure at age 73 years, adjusted for age 11 IQ. Neurology 87, 1820–1826. https://doi.org/10.1212/WNL.0000000000003247Cox, S.R., McKenzie, T.I., Aribisala, B.S., Royle, N.A., MacPherson, S.E., et al., (2016c). Volumetric and Correlational Implications of Brain Parcellation Method Selection: A 3-Way Comparison in the Frontal Lobes. Journal of Computer Assisted Tomography 40, 53–60. https://doi.org/10.1097/RCT.0000000000000314de Vries, P.S., Chasman, D.I., Sabater-Lleal, M., Chen, M.-H., Huffman, J.E., et al., (2016). A meta-analysis of 120 246 individuals identifies 18 new loci for fibrinogen concentration. Hum. Mol. Genet. 25, 358–370. https://doi.org/10.1093/hmg/ddv454Deary, I.J., Cox, S.R., Ritchie, S.J., (2016). Getting Spearman off the Skyhook: One More in a Century (Since Thomson, 1916) of Attempts to Vanquish g. Psychological Inquiry 27, 192–199. https://doi.org/10.1080/1047840X.2016.1186525Deary, I.J., Ritchie, S.J., (2016). Processing speed differences between 70- and 83-year-olds matched on childhood IQ. Intelligence 55, 28–33. https://doi.org/10.1016/j.intell.2016.01.002Dickie, D.A., Karama, S., Ritchie, S.J., Cox, S.R., Sakka, E., et al., (2016a). Progression of White Matter Disease and Cortical Thinning Are Not Related in Older Community-Dwelling Subjects. Stroke 47, 410–416. https://doi.org/10.1161/STROKEAHA.115.011229Dickie, D.A., Ritchie, S.J., Cox, S.R., Sakka, E., Royle, N.A., et al., (2016b). Vascular risk factors and progression of white matter hyperintensities in the Lothian Birth Cohort 1936. Neurobiology of Aging 42, 116–123. https://doi.org/10.1016/j.neurobiolaging.2016.03.011Dykiert, D., Der, G., Starr, J.M., Deary, I.J., (2016). Why is Mini-Mental state examination performance correlated with estimated premorbid cognitive ability?. Psychol. Med. 46, 2647–2654. https://doi.org/10.1017/S0033291716001045Eicher, J.D., Chami, N., Kacprowski, T., Nomura, A., Chen, M.-H., et al., (2016). Platelet-Related Variants Identified by Exomechip Meta-analysis in 157,293 Individuals. The American Journal of Human Genetics 99, 40–55. https://doi.org/10.1016/j.ajhg.2016.05.005Field, T., Doubal, F., Johnson, W., Backhouse, E., McHutchison, C., et al., (2016). Early life characteristics and late life burden of cerebral small vessel disease in the Lothian Birth Cohort 1936. aging 8, 2039–2061. https://doi.org/10.18632/aging.101043Firth, C., Harrison, R., Ritchie, S., Wardlaw, J., Ferro, C.J., et al., (2016). Cytomegalovirus infection is associated with an increase in systolic blood pressure in older individuals. QJM 109, 595–600. https://doi.org/10.1093/qjmed/hcw026Gale, C.R., Booth, T., Starr, J.M., Deary, I.J., (2016). Intelligence and socioeconomic position in childhood in relation to frailty and cumulative allostatic load in later life: the Lothian Birth Cohort 1936. J Epidemiol Community Health 70, 576–582. https://doi.org/10.1136/jech-2015-205789Hagenaars, Saskia P, Harris, S.E., Clarke, T.-K., Hall, L., Luciano, M., et al., (2016). Polygenic risk for coronary artery disease is associated with cognitive ability in older adults. Int. J. Epidemiol. 45, 433–440. https://doi.org/10.1093/ije/dyv354Hagenaars, S P, Harris, S.E., Davies, G., Hill, W.D., Liewald, D.C.M., et al., (2016). Shared genetic aetiology between cognitive functions and physical and mental health in UK Biobank (N=112 151) and 24 GWAS consortia. Mol Psychiatry 21, 1624–1632. https://doi.org/10.1038/mp.2015.225Harris, M.A., Brett, C.E., Starr, J.M., Deary, I.J., Johnson, W., (2016). Personality and Other Lifelong Influences on Older-Age Health and Wellbeing: Preliminary Findings in Two Scottish Samples: Predicting Older-age health and wellbeing. Eur. J. Pers. 30, 438–455. https://doi.org/10.1002/per.2068Harris, S.E., Malik, R., Marioni, R., Campbell, A., Seshadri, S., et al., (2016a). Polygenic risk of ischemic stroke is associated with cognitive ability. Neurology 86, 611–618. https://doi.org/10.1212/WNL.0000000000002306Harris, S.E., Marioni, R.E., Martin-Ruiz, C., Pattie, A., Gow, A.J., et al., (2016b). Longitudinal telomere length shortening and cognitive and physical decline in later life: The Lothian Birth Cohorts 1936 and 1921. Mechanisms of Ageing and Development 154, 43–48. https://doi.org/10.1016/j.mad.2016.02.004Hill, W.D., Davies, G., Harris, S.E., Hagenaars, S.P., Liewald, D.C., et al., (2016). Molecular genetic aetiology of general cognitive function is enriched in evolutionarily conserved regions. Transl Psychiatry 6, e980–e980. https://doi.org/10.1038/tp.2016.246Hill, W.D., Davies, G., Liewald, D.C., McIntosh, A.M., Deary, I.J., (2016). Age-Dependent Pleiotropy Between General Cognitive Function and Major Psychiatric Disorders. Biological Psychiatry 80, 266–273. https://doi.org/10.1016/j.biopsych.2015.08.033Hill, W.D., Davies, G., Liewald, D.C., Payton, A., McNeil, C.J., et al., (2016). Examining non-syndromic autosomal recessive intellectual disability (NS-ARID) genes for an enriched association with intelligence differences. Intelligence 54, 80–89. https://doi.org/10.1016/j.intell.2015.11.005Howrigan, D.P., Simonson, M.A., Davies, G., Harris, S.E., Tenesa, A., et al., (2016). Genome-wide autozygosity is associated with lower general cognitive ability. Mol Psychiatry 21, 837–843. https://doi.org/10.1038/mp.2015.120Ibrahim-Verbaas, C.A., Bressler, J., Debette, S., Schuur, M., Smith, A.V., et al., (2016). GWAS for executive function and processing speed suggests involvement of the CADM2 gene. Mol Psychiatry 21, 189–197. https://doi.org/10.1038/mp.2015.37Joehanes, R., Just, A.C., Marioni, R.E., Pilling, L.C., Reynolds, L.M., et al., (2016). Epigenetic Signatures of Cigarette Smoking. Circ Cardiovasc Genet 9, 436–447. https://doi.org/10.1161/CIRCGENETICS.116.001506Johnson, M.R., Shkura, K., Langley, S.R., Delahaye-Duriez, A., Srivastava, P., et al., (2016). Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease. Nat Neurosci 19, 223–232. https://doi.org/10.1038/nn.4205Kim, J., Valdés Hernández, M. del C., Royle, N.A., Maniega, S.M., Aribisala, B.S., et al., (2016). 3D shape analysis of the brain’s third ventricle using a midplane encoded symmetric template model. Computer Methods and Programs in Biomedicine 129, 51–62. https://doi.org/10.1016/j.cmpb.2016.02.014Kuznetsova, K.A., Maniega, S.M., Ritchie, S.J., Cox, S.R., Storkey, A.J., et al., (2016). Brain white matter structure and information processing speed in healthy older age. Brain Struct Funct 221, 3223–3235. https://doi.org/10.1007/s00429-015-1097-5Lapsley, H., Pattie, A., Starr, J.M., Deary, I.J., (2016). Life review in advanced age: qualitative research on the ‘start in life’ of 90-year-olds in the Lothian Birth Cohort 1921. BMC Geriatr 16, 74. https://doi.org/10.1186/s12877-016-0246-xLewis, G.J., Cox, S.R., Booth, T., Muñoz Maniega, S., Royle, N.A., et al., (2016). Trait conscientiousness and the personality meta-trait stability are associated with regional white matter microstructure. Social Cognitive and Affective Neuroscience 11, 1255–1261. https://doi.org/10.1093/scan/nsw037Ligthart, S., Marzi, C., Aslibekyan, S., Mendelson, M.M., Conneely, K.N., et al., (2016). DNA methylation signatures of chronic low-grade inflammation are associated with complex diseases. Genome Biol 17, 255. https://doi.org/10.1186/s13059-016-1119-5Lin, Q., Weidner, C.I., Costa, I.G., Marioni, R.E., Ferreira, M.R.P., et al., (2016). DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. aging 8, 394–401. https://doi.org/10.18632/aging.100908Marioni, R.E., Harris, S.E., Shah, S., McRae, A.F., von Zglinicki, T., et al., (2016). The epigenetic clock and telomere length are independently associated with chronological age and mortality. Int. J. Epidemiol. 45, 424–432. https://doi.org/10.1093/ije/dyw041Matteini, A.M., Tanaka, T., Karasik, D., Atzmon, G., Chou, W.-C., et al., (2016). GWAS analysis of handgrip and lower body strength in older adults in the CHARGE consortium. Aging Cell 15, 792–800. https://doi.org/10.1111/acel.12468Natarajan, P., Bis, J.C., Bielak, L.F., Cox, A.J., Dörr, M., et al., (2016). Multiethnic Exome-Wide Association Study of Subclinical Atherosclerosis. Circ Cardiovasc Genet 9, 511–520. https://doi.org/10.1161/CIRCGENETICS.116.001572North, T.-L., Ben-Shlomo, Y., Cooper, C., Deary, I.J., Gallacher, J., et al., (2016). A study of common Mendelian disease carriers across ageing British cohorts: meta-analyses reveal heterozygosity for alpha 1-antitrypsin deficiency increases respiratory capacity and height. J Med Genet 53, 280–288. https://doi.org/10.1136/jmedgenet-2015-103342Okbay, A., Baselmans, B.M.L., De Neve, J.-E., Turley, P., Nivard, M.G., et al., (2016a). Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat Genet 48, 624–633. https://doi.org/10.1038/ng.3552Okbay, A., Beauchamp, J.P., Fontana, M.A., Lee, J.J., Pers, T.H., et al., (2016b). Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542. https://doi.org/10.1038/nature17671Pearce, J., Shortt, N., Rind, E., Mitchell, R., (2016). Life Course, Green Space and Health: Incorporating Place into Life Course Epidemiology. IJERPH 13, 331. https://doi.org/10.3390/ijerph13030331Ritchie, S.J., Dickie, D.A., Cox, S.R., Valdes Hernandez, M. del C., Corley, J., et al., (2016a). Brain volumetric changes and cognitive ageing during the eighth decade of life. Hum. Brain Mapp. 36, 4910–4925. https://doi.org/10.1002/hbm.22959Ritchie, S.J., Tucker-Drob, E.M., Cox, S.R., Corley, J., Dykiert, D., et al., (2016b). Predictors of ageing-related decline across multiple cognitive functions. Intelligence 59, 115–126. https://doi.org/10.1016/j.intell.2016.08.007Ritchie, S.J., Tucker-Drob, E.M., Starr, J.M., Deary, I.J., (2016c). Do Cognitive and Physical Functions Age in Concert from Age 70 to 76? Evidence from the Lothian Birth Cohort 1936. Span. J. Psychol. 19, E90. https://doi.org/10.1017/sjp.2016.85Schumann, G., Liu, C., O’Reilly, P., Gao, H., Song, P., et al., (2016). KLB is associated with alcohol drinking, and its gene product β-Klotho is necessary for FGF21 regulation of alcohol preference. Proc Natl Acad Sci USA 113, 14372–14377. https://doi.org/10.1073/pnas.1611243113Surendran, P., Drenos, F., Young, R., Warren, H., Cook, J.P., et al., (2016). Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat Genet 48, 1151–1161. https://doi.org/10.1038/ng.3654Tajuddin, S.M., Schick, U.M., Eicher, J.D., Chami, N., Giri, A., et al., (2016). Large-Scale Exome-wide Association Analysis Identifies Loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases. The American Journal of Human Genetics 99, 22–39. https://doi.org/10.1016/j.ajhg.2016.05.003the CHARGE Consortium Hematology Working Group, (2016). Meta-analysis of rare and common exome chip variants identifies S1PR4 and other loci influencing blood cell traits. Nat Genet 48, 867–876. https://doi.org/10.1038/ng.3607Valdés Hernández, M., Allerhand, M., Glatz, A., Clayson, L., Muñoz Maniega, S., et al., (2016). Do white matter hyperintensities mediate the association between brain iron deposition and cognitive abilities in older people?. Eur J Neurol 23, 1202–1209. https://doi.org/10.1111/ene.13006van den Berg, S.M., de Moor, M.H.M., Verweij, K.J.H., Krueger, R.F., Luciano, M., et al., (2016). Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium. Behav Genet 46, 170–182. https://doi.org/10.1007/s10519-015-9735-5van Loon, J., Dehghan, A., Weihong, T., Trompet, S., McArdle, W.L., et al., (2016). Genome-wide association studies identify genetic loci for low von Willebrand factor levels. Eur J Hum Genet 24, 1035–1040. https://doi.org/10.1038/ejhg.2015.222Wang, X., Valdés Hernández, M. del C., Doubal, F., Chappell, F.M., Piper, R.J., et al., (2016). Development and initial evaluation of a semi-automatic approach to assess perivascular spaces on conventional magnetic resonance images. Journal of Neuroscience Methods 257, 34–44. https://doi.org/10.1016/j.jneumeth.2015.09.010 2015Artigas, M.S., Wain, L.V., Miller, S., Kheirallah, A.K., Huffman, J.E., et al., (2015). Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation. Nat Commun 6, 8658. https://doi.org/10.1038/ncomms9658Booth, T., Royle, N.A., Corley, J., Gow, A.J., Valdés Hernández, M. del C., et al., (2015). Association of allostatic load with brain structure and cognitive ability in later life. Neurobiology of Aging 36, 1390–1399. https://doi.org/10.1016/j.neurobiolaging.2014.12.020Corley, J., Kyle, J.A.M., Starr, J.M., McNeill, G., Deary, I.J., (2015a). Dietary factors and biomarkers of systemic inflammation in older people: the Lothian Birth Cohort 1936. Br J Nutr 114, 1088–1098. https://doi.org/10.1017/S000711451500210XCorley, J., Starr, J.M., Deary, I.J., (2015b). Serum cholesterol and cognitive functions: the Lothian Birth Cohort 1936. Int. Psychogeriatr. 27, 439–453. https://doi.org/10.1017/S1041610214001197Cox, S.R., Bastin, M.E., Ferguson, K.J., Allerhand, M., Royle, N.A., et al., (2015a). Compensation or inhibitory failure? Testing hypotheses of age-related right frontal lobe involvement in verbal memory ability using structural and diffusion MRI. Cortex 63, 4–15. https://doi.org/10.1016/j.cortex.2014.08.001Cox, S.R., Bastin, M.E., Ferguson, K.J., Maniega, S.M., MacPherson, S.E., et al., (2015b). Brain white matter integrity and cortisol in older men: the Lothian Birth Cohort 1936. Neurobiology of Aging 36, 257–264. https://doi.org/10.1016/j.neurobiolaging.2014.06.022Cox, S.R., MacPherson, S.E., Ferguson, K.J., Royle, N.A., Maniega, S.M., et al., (2015c). Does white matter structure or hippocampal volume mediate associations between cortisol and cognitive ageing?. Psychoneuroendocrinology 62, 129–137. https://doi.org/10.1016/j.psyneuen.2015.08.005Čukić, I., Mõttus, R., Luciano, M., Starr, J.M., Weiss, A., et al., (2015). Do personality traits moderate the manifestation of type 2 diabetes genetic risk?. Journal of Psychosomatic Research 79, 303–308. https://doi.org/10.1016/j.jpsychores.2015.07.003Dahl Aslan, A.K., Starr, J.M., Pattie, A., Deary, I., (2015). Cognitive consequences of overweight and obesity in the ninth decade of life?. Age and Ageing 44, 59–65. https://doi.org/10.1093/ageing/afu108Davies, G., Armstrong, N., Bis, J.C., Bressler, J., Chouraki, V., et al., (2015). Genetic contributions to variation in general cognitive function: a meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 949). Mol Psychiatry 20, 183–192. https://doi.org/10.1038/mp.2014.188de Moor, M.H.M., van den Berg, S.M., Verweij, K.J.H., Krueger, R.F., Luciano, M., et al., (2015). Meta-analysis of Genome-wide Association Studies for Neuroticism, and the Polygenic Association With Major Depressive Disorder. JAMA Psychiatry 72, 642. https://doi.org/10.1001/jamapsychiatry.2015.0554Debette, S., Ibrahim Verbaas, C.A., Bressler, J., Schuur, M., Smith, A., et al., (2015). Genome-wide Studies of Verbal Declarative Memory in Nondemented Older People: The Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. Biological Psychiatry 77, 749–763. https://doi.org/10.1016/j.biopsych.2014.08.027del C. Valdés Hernández, M., Allan, J., Glatz, A., Kyle, J., Corley, J., et al., (2015a). Exploratory analysis of dietary intake and brain iron accumulation detected using magnetic resonance imaging in older individuals: The Lothian Birth Cohort 1936. J Nutr Health Aging 19, 64–69. https://doi.org/10.1007/s12603-014-0523-3del C. Valdés Hernández, M., Maconick, L.C., Muñoz Maniega, S., Wang, X., Wiseman, S., et al., (2015b). A Comparison of Location of Acute Symptomatic vs. ‘Silent’ Small Vessel Lesions. International Journal of Stroke 10, 1044–1050. https://doi.org/10.1111/ijs.12558del C. Valdés Hernández, M., Ritchie, S., Glatz, A., Allerhand, M., Muñoz Maniega, S., et al., (2015c). Brain iron deposits and lifespan cognitive ability. AGE 37, 100. https://doi.org/10.1007/s11357-015-9837-2Gale, C.R., Eadie, E., Thomas, A., Bastin, M.E., Starr, J.M., et al., (2015). Intelligence in Childhood and Atherosclerosis of the Carotid and Peripheral Arteries in Later Life: The Lothian Birth Cohort 1936. PLoS ONE 10, e0125280. https://doi.org/10.1371/journal.pone.0125280Gharib, S.A., Loth, D.W., Soler Artigas, M., Birkland, T.P., Wilk, J.B., et al., (2015). Integrative pathway genomics of lung function and airflow obstruction. Hum. Mol. Genet. 24, 6836–6848. https://doi.org/10.1093/hmg/ddv378Glatz, A., Bastin, M.E., Kiker, A.J., Deary, I.J., Wardlaw, J.M., et al., (2015). Automated segmentation of multifocal basal ganglia T2*-weighted MRI hypointensities. NeuroImage 105, 332–346. https://doi.org/10.1016/j.neuroimage.2014.10.001Henstridge, C.M., Jackson, R.J., Kim, J.M., Herrmann, A.G., Wright, A.K., et al., (2015). Post-mortem brain analyses of the Lothian Birth Cohort 1936: extending lifetime cognitive and brain phenotyping to the level of the synapse. acta neuropathol commun 3, 53. https://doi.org/10.1186/s40478-015-0232-0Hibar, D.P., Stein, J.L., Renteria, M.E., Arias-Vasquez, A., Desrivières, S., et al., (2015). Common genetic variants influence human subcortical brain structures. Nature 520, 224–229. https://doi.org/10.1038/nature14101Huffman, Jennifer E., Albrecht, E., Teumer, A., Mangino, M., Kapur, K., et al., (2015). Modulation of Genetic Associations with Serum Urate Levels by Body-Mass-Index in Humans. PLoS ONE 10, e0119752. https://doi.org/10.1371/journal.pone.0119752Huffman, J. E., de Vries, P.S., Morrison, A.C., Sabater-Lleal, M., Kacprowski, T., et al., (2015). Rare and low-frequency variants and their association with plasma levels of fibrinogen, FVII, FVIII, and vWF. Blood 126, e19–e29. https://doi.org/10.1182/blood-2015-02-624551Joshi, P.K., Esko, T., Mattsson, H., Eklund, N., Gandin, I., et al., (2015). Directional dominance on stature and cognition in diverse human populations. Nature 523, 459–462. https://doi.org/10.1038/nature14618Karama, S., Ducharme, S., Corley, J., Chouinard-Decorte, F., Starr, J.M., et al., (2015). Cigarette smoking and thinning of the brain’s cortex. Mol Psychiatry 20, 778–785. https://doi.org/10.1038/mp.2014.187Kato, N., Loh, M., Takeuchi, F., Verweij, N., Wang, X., et al., (2015). Trans-ancestry genome-wide association study identifies 12 genetic loci influencing blood pressure and implicates a role for DNA methylation. Nat Genet 47, 1282–1293. https://doi.org/10.1038/ng.3405Kim, J., Valdes-Hernandez, M. del C., Royle, N.A., Park, J., (2015). Hippocampal Shape Modeling Based on a Progressive Template Surface Deformation and its Verification. IEEE Trans. Med. Imaging 34, 1242–1261. https://doi.org/10.1109/TMI.2014.2382581Kochunov, P., Jahanshad, N., Marcus, D., Winkler, A., Sprooten, E., et al., (2015). Heritability of fractional anisotropy in human white matter: A comparison of Human Connectome Project and ENIGMA-DTI data. NeuroImage 111, 300–311. https://doi.org/10.1016/j.neuroimage.2015.02.050Lopez, L.M., Hill, W.D., Harris, S.E., Valdes Hernandez, M., Munoz Maniega, S., et al., (2015). Genes From a Translational Analysis Support a Multifactorial Nature of White Matter Hyperintensities. Stroke 46, 341–347. https://doi.org/10.1161/STROKEAHA.114.007649Luciano, M., Marioni, R.E., Valdés Hernández, M., Muñoz Maniega, S., Hamilton, I.F., et al., (2015). Structural Brain MRI Trait Polygenic Score Prediction of Cognitive Abilities. Twin Res Hum Genet 18, 738–745. https://doi.org/10.1017/thg.2015.71Lyall, D.M., Muñoz Maniega, S., Harris, S.E., Bastin, M.E., Murray, C., et al., (2015). APOE/TOMM40 Genetic Loci, White Matter Hyperintensities, and Cerebral Microbleeds. International Journal of Stroke 10, 1297–1300. https://doi.org/10.1111/ijs.12615Maniega, S.M., Valdés Hernández, M.C., Clayden, J.D., Royle, N.A., Murray, C., et al., (2015). White matter hyperintensities and normal-appearing white matter integrity in the aging brain. Neurobiology of Aging 36, 909–918. https://doi.org/10.1016/j.neurobiolaging.2014.07.048Marioni, R.E., Shah, S., McRae, A.F., Chen, B.H., Colicino, E., et al., (2015a). DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol 16, 25. https://doi.org/10.1186/s13059-015-0584-6Marioni, R.E., Shah, S., McRae, A.F., Ritchie, S.J., Muniz-Terrera, G., et al., (2015b). The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. Int. J. Epidemiol. 44, 1388–1396. https://doi.org/10.1093/ije/dyu277McGrory, S., Austin, E.J., Shenkin, S.D., Starr, J.M., Deary, I.J., (2015). From “aisle” to “labile”: A hierarchical National Adult Reading Test scale revealed by Mokken scaling.. Psychological Assessment 27, 932–943. https://doi.org/10.1037/pas0000091Mõttus, R., Luciano, M., Sarr, J.M., McCarthy, M.I., Deary, I.J., (2015). Childhood cognitive ability moderates later-life manifestation of type 2 diabetes genetic risk.. Health Psychology 34, 915–919. https://doi.org/10.1037/hea0000184Murray, A.L., Johnson, W., Gow, A.J., Deary, I.J., (2015). Disentangling wording and substantive factors in the Spiritual Well-Being Scale.. Psychology of Religion and Spirituality 7, 120–129. https://doi.org/10.1037/a0038001North, T.-L., Palmer, T.M., Lewis, S.J., Cooper, R., Power, C., et al., (2015). Effect of smoking on physical and cognitive capability in later life: a multicohort study using observational and genetic approaches. BMJ Open 5, e008393. https://doi.org/10.1136/bmjopen-2015-008393Parikh, J., Thrippleton, M.J., Murray, C., Armitage, P.A., Harris, B.A., et al., (2015). Proton spectroscopic imaging of brain metabolites in basal ganglia of healthy older adults. Magn Reson Mater Phy 28, 251–257. https://doi.org/10.1007/s10334-014-0465-0Ritchie, S.J., Bastin, M.E., Tucker-Drob, E.M., Maniega, S.M., Engelhardt, L.E., et al., (2015a). Coupled Changes in Brain White Matter Microstructure and Fluid Intelligence in Later Life. J. Neurosci. 35, 8672–8682. https://doi.org/10.1523/JNEUROSCI.0862-15.2015Ritchie, S.J., Bates, T.C., Deary, I.J., (2015b). Is education associated with improvements in general cognitive ability, or in specific skills?. Developmental Psychology 51, 573–582. https://doi.org/10.1037/a0038981Ritchie, S.J., Booth, T., Valdés Hernández, M. del C., Corley, J., Maniega, S.M., et al., (2015c). Beyond a bigger brain: Multivariable structural brain imaging and intelligence. Intelligence 51, 47–56. https://doi.org/10.1016/j.intell.2015.05.001Shah, S., Bonder, M.J., Marioni, R.E., Zhu, Z., McRae, A.F., et al., (2015). Improving Phenotypic Prediction by Combining Genetic and Epigenetic Associations. The American Journal of Human Genetics 97, 75–85. https://doi.org/10.1016/j.ajhg.2015.05.014Staals, J., Booth, T., Morris, Z., Bastin, M.E., Gow, A.J., et al., (2015). Total MRI load of cerebral small vessel disease and cognitive ability in older people. Neurobiology of Aging 36, 2806–2811. https://doi.org/10.1016/j.neurobiolaging.2015.06.024Taylor, A.M., MacGillivray, T.J., Henderson, R.D., Ilzina, L., Dhillon, B., et al., (2015). Retinal Vascular Fractal Dimension, Childhood IQ, and Cognitive Ability in Old Age: The Lothian Birth Cohort Study 1936. PLoS ONE 10, e0121119. https://doi.org/10.1371/journal.pone.0121119Timofeeva, M.N., Kinnersley, B., Farrington, S.M., Whiffin, N., Palles, C., et al., (2015). Recurrent Coding Sequence Variation Explains Only A Small Fraction of the Genetic Architecture of Colorectal Cancer. Sci Rep 5, 16286. https://doi.org/10.1038/srep16286Trampush, J.W., Lencz, T., Knowles, E., Davies, G., Guha, S., et al., (2015). Independent evidence for an association between general cognitive ability and a genetic locus for educational attainment: Genetic Overlap Between Cognition and Education. Am. J. Med. Genet. 168, 363–373. https://doi.org/10.1002/ajmg.b.32319Verhaaren, B.F.J., Debette, S., Bis, J.C., Smith, J.A., Ikram, M.K., et al., (2015). Multiethnic Genome-Wide Association Study of Cerebral White Matter Hyperintensities on MRI. Circ Cardiovasc Genet 8, 398–409. https://doi.org/10.1161/CIRCGENETICS.114.000858 2014Alfred, T., Ben-Shlomo, Y., Cooper, R., Hardy, R., Cooper, C., et al., (2014). Associations between APOE and low-density lipoprotein cholesterol genotypes and cognitive and physical capability: the HALCyon programme. AGE 36, 9673. https://doi.org/10.1007/s11357-014-9673-9Aribisala, Benjamin S., Morris, Z., Eadie, E., Thomas, A., Gow, A., et al., (2014a). Blood Pressure, Internal Carotid Artery Flow Parameters, and Age-Related White Matter Hyperintensities. Hypertension 63, 1011–1018. https://doi.org/10.1161/HYPERTENSIONAHA.113.02735Aribisala, Benjamin S., Royle, N.A., Maniega, S.M., Valdés Hernández, M.C., Murray, C., et al., (2014b). Quantitative multi-modal MRI of the Hippocampus and cognitive ability in community-dwelling older subjects. Cortex 53, 34–44. https://doi.org/10.1016/j.cortex.2013.12.012Aribisala, B. S., Royle, N.A., Valdes Hernandez, M.C., Murray, C., Penke, L., et al., (2014). Potential effect of skull thickening on the associations between cognition and brain atrophy in ageing. Age and Ageing 43, 712–716. https://doi.org/10.1093/ageing/afu070Aribisala, Benjamin S., Wiseman, S., Morris, Z., Valdés-Hernández, M.C., Royle, N.A., et al., (2014c). Circulating Inflammatory Markers Are Associated With Magnetic Resonance Imaging-Visible Perivascular Spaces But Not Directly With White Matter Hyperintensities. Stroke 45, 605–607. https://doi.org/10.1161/STROKEAHA.113.004059Bak, T.H., Nissan, J.J., Allerhand, M.M., Deary, I.J., (2014). Does bilingualism influence cognitive aging?. Ann Neurol. 75, 959–963. https://doi.org/10.1002/ana.24158Baumert, J., Huang, J., McKnight, B., Sabater-Lleal, M., Steri, M., et al., (2014). No Evidence for Genome-Wide Interactions on Plasma Fibrinogen by Smoking, Alcohol Consumption and Body Mass Index: Results from Meta-Analyses of 80,607 Subjects. PLoS ONE 9, e111156. https://doi.org/10.1371/journal.pone.0111156Benyamin, B., Pourcain, Bs., Davis, O.S., Davies, G., Hansell, N.K., et al., (2014). Childhood intelligence is heritable, highly polygenic and associated with FNBP1L. Mol Psychiatry 19, 253–258. https://doi.org/10.1038/mp.2012.184Bihlmeyer, N.A., Brody, J.A., Smith, A.V., Lunetta, K.L., Nalls, M., et al., (2014). Genetic diversity is a predictor of mortality in humans. BMC Genetics 15, 159. https://doi.org/10.1186/s12863-014-0159-7Booth, T., Mõttus, R., Corley, J., Gow, A.J., Henderson, R.D., et al., (2014). Personality, health, and brain integrity: The Lothian Birth Cohort Study 1936.. Health Psychology 33, 1477–1486. https://doi.org/10.1037/hea0000012Christoforou, A., Espeseth, T., Davies, G., Fernandes, C.P.D., Giddaluru, S., et al., (2014). GWAS-based pathway analysis differentiates between fluid and crystallized intelligence. Genes, Brain and Behavior 13, 663–674. https://doi.org/10.1111/gbb.12152Cooper, R., Stafford, M., Hardy, R., Aihie Sayer, A., Ben-Shlomo, Y., et al., (2014). Physical capability and subsequent positive mental wellbeing in older people: findings from five HALCyon cohorts. AGE 36, 445–456. https://doi.org/10.1007/s11357-013-9553-8Cox, S.R., Ferguson, K.J., Royle, N.A., Shenkin, S.D., MacPherson, S.E., et al., (2014a). A systematic review of brain frontal lobe parcellation techniques in magnetic resonance imaging. Brain Struct Funct 219, 1–22. https://doi.org/10.1007/s00429-013-0527-5Cox, S.R., MacPherson, S.E., Ferguson, K.J., Nissan, J., Royle, N.A., et al., (2014b). Correlational structure of ‘frontal’ tests and intelligence tests indicates two components with asymmetrical neurostructural correlates in old age. Intelligence 46, 94–106. https://doi.org/10.1016/j.intell.2014.05.006Davies, G., Harris, S.E., Reynolds, C.A., Payton, A., Knight, H.M., et al., (2014). A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing. Mol Psychiatry 19, 76–87. https://doi.org/10.1038/mp.2012.159Deary, I.J., (2014). The Stability of Intelligence From Childhood to Old Age. Curr Dir Psychol Sci 23, 239–245. https://doi.org/10.1177/0963721414536905del C. Valdés Hernández, M., Glatz, A., Kiker, A.J., Dickie, D.A., Aribisala, B.S., et al., (2014). Differentiation of calcified regions and iron deposits in the ageing brain on conventional structural MR images: Calcium and Iron on Conventional MRI. J. Magn. Reson. Imaging 40, 324–333. https://doi.org/10.1002/jmri.24348Dodds, R.M., Syddall, H.E., Cooper, R., Benzeval, M., Deary, I.J., et al., (2014). Grip Strength across the Life Course: Normative Data from Twelve British Studies. PLoS ONE 9, e113637. https://doi.org/10.1371/journal.pone.0113637Gardner, M., Bann, D., Wiley, L., Cooper, R., Hardy, R., et al., (2014). Gender and telomere length: Systematic review and meta-analysis. Experimental Gerontology 51, 15–27. https://doi.org/10.1016/j.exger.2013.12.004Harris, S.E., Davies, G., Luciano, M., Payton, A., Fox, H.C., et al., (2014). Polygenic Risk for Alzheimer’s Disease is not Associated with Cognitive Ability or Cognitive Aging in Non-Demented Older People. JAD 39, 565–574. https://doi.org/10.3233/JAD-131058Hernández, M.C.V., Piper, R.J., Bastin, M.E., Royle, N.A., Maniega, S.M., et al., (2014). Morphologic, Distributional, Volumetric, and Intensity Characterization of Periventricular Hyperintensities. AJNR Am J Neuroradiol 35, 55–62. https://doi.org/10.3174/ajnr.A3612Hill, W D, Davies, G., van de Lagemaat, L.N., Christoforou, A., Marioni, R.E., et al., (2014). Human cognitive ability is influenced by genetic variation in components of postsynaptic signalling complexes assembled by NMDA receptors and MAGUK proteins. Transl Psychiatry 4, e341–e341. https://doi.org/10.1038/tp.2013.114Hill, W. David, de Leeuw, C., Davies, G., Liewald, D.C.M., Payton, A., et al., (2014). Functional Gene Group Analysis Indicates No Role for Heterotrimeric G Proteins in Cognitive Ability. PLoS ONE 9, e91690. https://doi.org/10.1371/journal.pone.0091690Karama, S., Bastin, M.E., Murray, C., Royle, N.A., Penke, L., et al., (2014). Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age. Mol Psychiatry 19, 555–559. https://doi.org/10.1038/mp.2013.64Laukka, E.J., Starr, J.M., Deary, I.J., (2014). Lower ankle-brachial index is related to worse cognitive performance in old age.. Neuropsychology 28, 281–289. https://doi.org/10.1037/neu0000028Lencz, T., Knowles, E., Davies, G., Guha, S., Liewald, D.C., et al., (2014). Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the Cognitive Genomics consorTium (COGENT). Mol Psychiatry 19, 168–174. https://doi.org/10.1038/mp.2013.166Loth, D.W., Artigas, M.S., Gharib, S.A., Wain, L.V., Franceschini, N., et al., (2014). Genome-wide association analysis identifies six new loci associated with forced vital capacity. Nat Genet 46, 669–677. https://doi.org/10.1038/ng.3011Luciano, M., Mõttus, R., Harris, S.E., Davies, G., Payton, A., et al., (2014). Predicting cognitive ability in ageing cohorts using Type 2 diabetes genetic risk. Diabet. Med. 31, 714–720. https://doi.org/10.1111/dme.12389Lyall, D M, Harris, S.E., Bastin, M.E., Muñoz Maniega, S., Murray, C., et al., (2014). Are APOE ɛ genotype and TOMM40 poly-T repeat length associations with cognitive ageing mediated by brain white matter tract integrity?. Translational Psychiatry 4, e449.Lyall, Donald M., Harris, S.E., Bastin, M.E., Muñoz Maniega, S., Murray, C., et al., (2014). Alzheimer’s disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936. Neurobiology of Aging 35, 1513.e25-1513.e33. https://doi.org/10.1016/j.neurobiolaging.2014.01.006Marioni, R.E., Penke, L., Davies, G., Huffman, J.E., Hayward, C., et al., (2014). The total burden of rare, non-synonymous exome genetic variants is not associated with childhood or late-life cognitive ability. Proceedings of the Royal Society B: Biological Sciences 281, 20140117–20140117. https://doi.org/10.1098/rspb.2014.0117Mõttus, R., Johnson, W., Murray, C., Wolf, M.S., Starr, J.M., et al., (2014). Towards understanding the links between health literacy and physical health.. Health Psychology 33, 164–173. https://doi.org/10.1037/a0031439Paterson, L., Gow, A.J., Deary, I.J., (2014). School reform and opportunity throughout the lifecourse: the Lothian Birth Cohort 1936. School Effectiveness and School Improvement 25, 105–125. https://doi.org/10.1080/09243453.2013.772903Peloso, G.M., Auer, P.L., Bis, J.C., Voorman, A., Morrison, A.C., et al., (2014). Association of Low-Frequency and Rare Coding-Sequence Variants with Blood Lipids and Coronary Heart Disease in 56,000 Whites and Blacks. The American Journal of Human Genetics 94, 223–232. https://doi.org/10.1016/j.ajhg.2014.01.009Perry, J.R.B., Hsu, Y.-H., Chasman, D.I., Johnson, A.D., Elks, C., et al., (2014). DNA mismatch repair gene MSH6 implicated in determining age at natural menopause. Human Molecular Genetics 23, 2490–2497. https://doi.org/10.1093/hmg/ddt620Rietveld, C.A., Esko, T., Davies, G., Pers, T.H., Turley, P., et al., (2014). Common genetic variants associated with cognitive performance identified using the proxy-phenotype method. Proceedings of the National Academy of Sciences 111, 13790–13794. https://doi.org/10.1073/pnas.1404623111Ritchie, S.J., Bates, T.C., Corley, J., McNeill, G., Davies, G., et al., (2014a). Alcohol consumption and lifetime change in cognitive ability: a gene × environment interaction study. AGE 36, 9638. https://doi.org/10.1007/s11357-014-9638-zRitchie, S.J., Gow, A.J., Deary, I.J., (2014b). Religiosity is negatively associated with later-life intelligence, but not with age-related cognitive decline. Intelligence 46, 9–17. https://doi.org/10.1016/j.intell.2014.04.005Ritchie, S.J., Tucker-Drob, E.M., Deary, I.J., (2014c). A strong link between speed of visual discrimination and cognitive ageing. Current Biology 24, R681–R683. https://doi.org/10.1016/j.cub.2014.06.012Shah, S., McRae, A.F., Marioni, R.E., Harris, S.E., Gibson, J., et al., (2014). Genetic and environmental exposures constrain epigenetic drift over the human life course. Genome Res. 24, 1725–1733. https://doi.org/10.1101/gr.176933.114Shenkin, S. D., Laidlaw, K., Allerhand, M., Mead, G.E., Starr, J.M., et al., (2014). Life course Influences of Physical and Cognitive Function and Personality on Attitudes to Ageing in the Lothian Birth cohort 1936. Age and Ageing 43, 32–32. https://doi.org/10.1093/ageing/afu045Shenkin, Susan D., Laidlaw, K., Allerhand, M., Mead, G.E., Starr, J.M., et al., (2014a). Life course influences of physical and cognitive function and personality on attitudes to aging in the Lothian Birth Cohort 1936. Int. Psychogeriatr. 26, 1417–1430. https://doi.org/10.1017/S1041610214000301Shenkin, Susan D., Watson, R., Laidlaw, K., Starr, J.M., Deary, I.J., (2014b). The Attitudes to Ageing Questionnaire: Mokken Scaling Analysis. PLoS ONE 9, e99100. https://doi.org/10.1371/journal.pone.0099100Smart, E.L., Gow, A.J., Deary, I.J., (2014). Occupational complexity and lifetime cognitive abilities. Neurology 83, 2285–2291. https://doi.org/10.1212/WNL.0000000000001075Tang, W., Kowgier, M., Loth, D.W., Soler Artigas, M., Joubert, B.R., et al., (2014). Large-Scale Genome-Wide Association Studies and Meta-Analyses of Longitudinal Change in Adult Lung Function. PLoS ONE 9, e100776. https://doi.org/10.1371/journal.pone.0100776Thompson, P.M., Stein, J.L., Medland, S.E., Hibar, D.P., Vasquez, A.A., et al., (2014). The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging and Behavior. https://doi.org/10.1007/s11682-013-9269-5Thomson, P.A., Parla, J.S., McRae, A.F., Kramer, M., Ramakrishnan, K., et al., (2014). 708 Common and 2010 rare DISC1 locus variants identified in 1542 subjects: analysis for association with psychiatric disorder and cognitive traits. Mol Psychiatry 19, 668–675. https://doi.org/10.1038/mp.2013.68Tucker-Drob, E.M., Briley, D.A., Starr, J.M., Deary, I.J., (2014). Structure and correlates of cognitive aging in a narrow age cohort.. Psychology and Aging 29, 236–249. https://doi.org/10.1037/a0036187Underwood, E., (2014). Starting young. Science 346, 568–571. https://doi.org/10.1126/science.346.6209.568van den Berg, S.M., de Moor, M.H.M., McGue, M., Pettersson, E., Terracciano, A., et al., (2014). Harmonization of Neuroticism and Extraversion phenotypes across inventories and cohorts in the Genetics of Personality Consortium: an application of Item Response Theory. Behav Genet 44, 295–313. https://doi.org/10.1007/s10519-014-9654-xWardlaw, J.M., Allerhand, M., Doubal, F.N., Valdes Hernandez, M., Morris, Z., et al., (2014). Vascular risk factors, large-artery atheroma, and brain white matter hyperintensities. Neurology 82, 1331–1338. https://doi.org/10.1212/WNL.0000000000000312Zammit, A.R., Starr, J.M., Johnson, W., Deary, I.J., (2014). Patterns and associates of cognitive function, psychosocial wellbeing and health in the Lothian Birth Cohort 1936. BMC Geriatr 14, 53. https://doi.org/10.1186/1471-2318-14-53 2013Alfred, T., Ben-Shlomo, Y., Cooper, R., Hardy, R., Cooper, C., et al., (2013a). Genetic markers of bone and joint health and physical capability in older adults: the HALCyon programme. Bone 52, 278–285. https://doi.org/10.1016/j.bone.2012.10.004Alfred, T., Ben-Shlomo, Y., Cooper, R., Hardy, R., Deary, I.J., et al., (2013b). Associations between a Polymorphism in the Pleiotropic GCKR and Age-Related Phenotypes: The HALCyon Programme. PLoS ONE 8, e70045. https://doi.org/10.1371/journal.pone.0070045Alfred, T., Ben-Shlomo, Y., Cooper, R., Hardy, R., Deary, I.J., et al., (2013c). Genetic Variants Influencing Biomarkers of Nutrition Are Not Associated with Cognitive Capability in Middle-Aged and Older Adults. The Journal of Nutrition 143, 606–612. https://doi.org/10.3945/jn.112.171520Amin, N., Hottenga, J.-J., Hansell, N.K., Janssens, A.C.J., de Moor, M.H., et al., (2013). Refining genome-wide linkage intervals using a meta-analysis of genome-wide association studies identifies loci influencing personality dimensions. Eur J Hum Genet 21, 876–882. https://doi.org/10.1038/ejhg.2012.263Aribisala, B.S., Cox, S.R., Ferguson, K.J., MacPherson, S.E., MacLullich, A.M.J., et al., (2013a). Assessing the Performance of Atlas-Based Prefrontal Brain Parcellation in an Aging Cohort:. Journal of Computer Assisted Tomography 37, 257–264. https://doi.org/10.1097/RCT.0b013e31828004eaAribisala, B.S., Gow, A.J., Bastin, M.E., del Carmen Valdés Hernández, M., Murray, C., et al., (2013b). Associations between Level and Change in Physical Function and Brain Volumes. PLoS ONE 8, e80386. https://doi.org/10.1371/journal.pone.0080386Aribisala, B.S., Valdés Hernández, M.C., Royle, N.A., Morris, Z., Muñoz Maniega, S., et al., (2013c). Brain atrophy associations with white matter lesions in the ageing brain: the Lothian Birth Cohort 1936. Eur Radiol 23, 1084–1092. https://doi.org/10.1007/s00330-012-2677-xBooth, Tom, Bastin, M.E., Penke, L., Maniega, S.M., Murray, C., et al., (2013a). Brain white matter tract integrity and cognitive abilities in community-dwelling older people: The Lothian Birth Cohort, 1936.. Neuropsychology 27, 595–607. https://doi.org/10.1037/a0033354Booth, Tom, Deary, I.J., Starr, J.M., (2013b). Thyroid stimulating hormone, free thyroxine and cognitive ability in old age: The Lothian birth cohort study 1936. Psychoneuroendocrinology 38, 597–601. https://doi.org/10.1016/j.psyneuen.2012.07.018Booth, Tom, Starr, J.M., Deary, I., (2013c). Modeling multisystem biological risk in later life: Allostatic load in the lothian birth cohort study 1936: Modeling of Allostatic Load. Am. J. Hum. Biol. 25, 538–543. https://doi.org/10.1002/ajhb.22406Booth, Thomas, Starr, J.M., Deary, I., (2013). Modeling multisystem biological risk in later life: Allostatic load in the lothian birth cohort study 1936: Modeling of Allostatic Load. American Journal of Human Biology 25, 538–543. https://doi.org/10.1002/ajhb.v25.4Corley, J., Starr, J.M., McNeill, G., Deary, I.J., (2013). Do dietary patterns influence cognitive function in old age?. Int. Psychogeriatr. 25, 1393–1407. https://doi.org/10.1017/S1041610213000793Deary, I.J., (2013). An intelligent Scotland: Professor Sir godfrey Thomson and the Scottish Mental Surveys of 1932 and 1947. JBA 1, 95–131. https://doi.org/10.5871/jba/001.095Deary, I.J., Pattie, A., Starr, J.M., (2013). The Stability of Intelligence From Age 11 to Age 90 Years: The Lothian Birth Cohort of 1921. Psychol Sci 24, 2361–2368. https://doi.org/10.1177/0956797613486487del C. Valdés Hernández, M., Piper, R.J., Wang, X., Deary, I.J., Wardlaw, J.M., (2013). Towards the automatic computational assessment of enlarged perivascular spaces on brain magnetic resonance images: A systematic review: Computational Assessment of Perivascular Spaces. J. Magn. Reson. Imaging 38, 774–785. https://doi.org/10.1002/jmri.24047Donohoe, G., Deary, I.J., Glahn, D.C., Malhotra, A.K., Burdick, K.E., (2013). Neurocognitive phenomics: examining the genetic basis of cognitive abilities. Psychol. Med. 43, 2027–2036. https://doi.org/10.1017/S0033291712002656Dykiert, D., Deary, I.J., (2013). Retrospective validation of WTAR and NART scores as estimators of prior cognitive ability using the Lothian Birth Cohort 1936.. Psychological Assessment 25, 1361–1366. https://doi.org/10.1037/a0033623Gardner, M.P., Martin-Ruiz, C., Cooper, R., Hardy, R., Sayer, A.A., et al., (2013). Telomere Length and Physical Performance at Older Ages: An Individual Participant Meta-Analysis. PLoS ONE 8, e69526. https://doi.org/10.1371/journal.pone.0069526Glatz, A., Valdés Hernández, M.C., Kiker, A.J., Bastin, M.E., Deary, I.J., et al., (2013). Characterization of multifocal T2*-weighted MRI hypointensities in the basal ganglia of elderly, community-dwelling subjects. NeuroImage 82, 470–480. https://doi.org/10.1016/j.neuroimage.2013.06.013Gow, A.J., Corley, J., Starr, J.M., Deary, I.J., (2013a). Which Social Network or Support Factors are Associated with Cognitive Abilities in Old Age?. Gerontology 59, 454–463. https://doi.org/10.1159/000351265Gow, A.J., Firth, C.M., Harrison, R., Starr, J.M., Moss, P., et al., (2013b). Cytomegalovirus infection and cognitive abilities in old age. Neurobiology of Aging 34, 1846–1852. https://doi.org/10.1016/j.neurobiolaging.2013.01.011Hardy, R., Cooper, R., Aihie Sayer, A., Ben-Shlomo, Y., Cooper, C., et al., (2013). Body Mass Index, Muscle Strength and Physical Performance in Older Adults from Eight Cohort Studies: The HALCyon Programme. PLoS ONE 8, e56483. https://doi.org/10.1371/journal.pone.0056483Hope, D., Bates, T., Penke, L., Gow, A.J., Starr, J.M., et al., (2013). Symmetry of the face in old age reflects childhood social status. Economics & Human Biology 11, 236–244. https://doi.org/10.1016/j.ehb.2011.06.006Jahanshad, N., Kochunov, P.V., Sprooten, E., Mandl, R.C., Nichols, T.E., et al., (2013). Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: A pilot project of the ENIGMA–DTI working group. NeuroImage 81, 455–469. https://doi.org/10.1016/j.neuroimage.2013.04.061Kilgour, A.H., Firth, C., Harrison, R., Moss, P., Bastin, M.E., et al., (2013). Seropositivity for CMV and IL-6 levels are associated with grip strength and muscle size in the elderly. Immun Ageing 10, 33. https://doi.org/10.1186/1742-4933-10-33Köttgen, A., Albrecht, E., Teumer, A., Vitart, V., Krumsiek, J., et al., (2013). Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet 45, 145–154. https://doi.org/10.1038/ng.2500Laude, A., Lascaratos, G., Henderson, R.D., Starr, J.M., Deary, I.J., et al., (2013). Retinal nerve fiber layer thickness and cognitive ability in older people: the Lothian Birth Cohort 1936 study. BMC Ophthalmol 13, 28. https://doi.org/10.1186/1471-2415-13-28Lyall, D.M., Lopez, L.M., Bastin, M.E., Maniega, S.M., Penke, L., et al., (2013a). ADRB2, brain white matter integrity and cognitive ageing in the Lothian Birth Cohort 1936. Behav Genet 43, 13–23. https://doi.org/10.1007/s10519-012-9570-xLyall, D.M., Royle, N.A., Harris, S.E., Bastin, M.E., Maniega, S.M., et al., (2013b). Alzheimer’s Disease Susceptibility Genes APOE and TOMM40, and Hippocampal Volumes in the Lothian Birth Cohort 1936. PLoS ONE 8, e80513. https://doi.org/10.1371/journal.pone.0080513McIntosh, A. M., Bastin, M.E., Luciano, M., Maniega, S.M., del C.Valdés Hernández, M., et al., (2013). Neuroticism, depressive symptoms and white-matter integrity in the Lothian Birth Cohort 1936. Psychol. Med. 43, 1197–1206. https://doi.org/10.1017/S003329171200150XMcIntosh, Andrew M., Gow, A., Luciano, M., Davies, G., Liewald, D.C., et al., (2013). Polygenic Risk for Schizophrenia Is Associated with Cognitive Change Between Childhood and Old Age. Biological Psychiatry 73, 938–943. https://doi.org/10.1016/j.biopsych.2013.01.011Mõttus, R., Luciano, M., Starr, J.M., Deary, I.J., (2013a). Diabetes and life-long cognitive ability. Journal of Psychosomatic Research 75, 275–278. https://doi.org/10.1016/j.jpsychores.2013.06.032Mõttus, R., Luciano, M., Starr, J.M., Pollard, M.C., Deary, I.J., (2013b). Personality Traits and Inflammation in Men and Women in Their Early 70s: The Lothian Birth Cohort 1936 Study of Healthy Aging. Psychosomatic Medicine 75, 11–19. https://doi.org/10.1097/PSY.0b013e31827576ccMõttus, R., McNeill, G., Jia, X., Craig, L.C.A., Starr, J.M., et al., (2013c). The associations between personality, diet and body mass index in older people.. Health Psychology 32, 353–360. https://doi.org/10.1037/a0025537Mõttus, R., Starr, J.M., Deary, I.J., (2013d). Predicting tooth loss in older age: Interplay between personality and socioeconomic status.. Health Psychology 32, 223–226. https://doi.org/10.1037/a0027357O’Seaghdha, C.M., Wu, H., Yang, Q., Kapur, K., Guessous, I., et al., (2013). Meta-Analysis of Genome-Wide Association Studies Identifies Six New Loci for Serum Calcium Concentrations. PLoS Genet 9, e1003796. https://doi.org/10.1371/journal.pgen.1003796Porcu, E., Medici, M., Pistis, G., Volpato, C.B., Wilson, S.G., et al., (2013). A Meta-Analysis of Thyroid-Related Traits Reveals Novel Loci and Gender-Specific Differences in the Regulation of Thyroid Function. PLoS Genet 9, e1003266. https://doi.org/10.1371/journal.pgen.1003266Rietveld, C.A., Medland, S.E., Derringer, J., Yang, J., Esko, T., et al., (2013). GWAS of 126,559 Individuals Identifies Genetic Variants Associated with Educational Attainment. Science 340, 1467–1471. https://doi.org/10.1126/science.1235488Ritchie, S.J., Bates, T.C., Der, G., Starr, J.M., Deary, I.J., (2013). Education is associated with higher later life IQ scores, but not with faster cognitive processing speed.. Psychology and Aging 28, 515–521. https://doi.org/10.1037/a0030820Rowe, S.J., Rowlatt, A., Davies, G., Harris, S.E., Porteous, D.J., et al., (2013). Complex Variation in Measures of General Intelligence and Cognitive Change. PLoS ONE 8, e81189. https://doi.org/10.1371/journal.pone.0081189Royle, Natalie A., Booth, T., Valdés Hernández, M.C., Penke, L., Murray, C., et al., (2013). Estimated maximal and current brain volume predict cognitive ability in old age. Neurobiology of Aging 34, 2726–2733. https://doi.org/10.1016/j.neurobiolaging.2013.05.015Royle, N.A., Hernández, M.C.V., Maniega, S.M., Arabisala, B.S., Bastin, M.E., et al., (2013). Influence of thickening of the inner skull table on intracranial volume measurement in older people. Magnetic Resonance Imaging 31, 918–922. https://doi.org/10.1016/j.mri.2013.01.012Sabater-Lleal, M., Huang, J., Chasman, D., Naitza, S., Dehghan, A., et al., (2013). Multiethnic Meta-Analysis of Genome-Wide Association Studies in >100 000 Subjects Identifies 23 Fibrinogen-Associated Loci but No Strong Evidence of a Causal Association Between Circulating Fibrinogen and Cardiovascular Disease. Circulation 128, 1310–1324. https://doi.org/10.1161/CIRCULATIONAHA.113.002251Sandeman, E.M., Hernandez, M. del C.V., Morris, Z., Bastin, M.E., Murray, C., et al., (2013). Incidental Findings on Brain MR Imaging in Older Community-Dwelling Subjects Are Common but Serious Medical Consequences Are Rare: A Cohort Study. PLoS ONE 8, e71467. https://doi.org/10.1371/journal.pone.0071467Thun, G.A., Imboden, M., Ferrarotti, I., Kumar, A., Obeidat, M., et al., (2013). Causal and Synthetic Associations of Variants in the SERPINA Gene Cluster with Alpha1-antitrypsin Serum Levels. PLoS Genet 9, e1003585. https://doi.org/10.1371/journal.pgen.1003585Valdés Hernández, M. del C., Booth, T., Murray, C., Gow, A.J., Penke, L., et al., (2013a). Brain white matter damage in aging and cognitive ability in youth and older age. Neurobiology of Aging 34, 2740–2747. https://doi.org/10.1016/j.neurobiolaging.2013.05.032Valdés Hernández, M. del C., Morris, Z., Dickie, D.A., Royle, N.A., Muñoz Maniega, S., et al., (2013b). Close Correlation between Quantitative and Qualitative Assessments of White Matter Lesions. Neuroepidemiology 40, 13–22. https://doi.org/10.1159/000341859von Stumm, S., Deary, I.J., (2013). Intellect and cognitive performance in the Lothian Birth Cohort 1936.. Psychology and Aging 28, 680–684. https://doi.org/10.1037/a0033924 2012Alfred, T., Ben-Shlomo, Y., Cooper, R., Hardy, R., Cooper, C., et al., (2012). A Multi-Cohort Study of Polymorphisms in the GH/IGF Axis and Physical Capability: The HALCyon Programme. PLoS ONE 7, e29883. https://doi.org/10.1371/journal.pone.0029883Brett, C.E., Gow, A.J., Corley, J., Pattie, A., Starr, J.M., et al., (2012). Psychosocial factors and health as determinants of quality of life in community-dwelling older adults. Qual Life Res 21, 505–516. https://doi.org/10.1007/s11136-011-9951-2Brown, L.A., Brockmole, J.R., Gow, A.J., Deary, I.J., (2012). Processing Speed and Visuospatial Executive Function Predict Visual Working Memory Ability in Older Adults. Experimental Aging Research 38, 1–19. https://doi.org/10.1080/0361073X.2012.636722Cipriani, V., Leung, H.-T., Plagnol, V., Bunce, C., Khan, J.C., et al., (2012). Genome-wide association study of age-related macular degeneration identifies associated variants in the TNXB–FKBPL–NOTCH4 region of chromosome 6p21.3. Human Molecular Genetics 21, 4138–4150. https://doi.org/10.1093/hmg/dds225Corley, J., Gow, A.J., Starr, J.M., Deary, I.J., (2012). Smoking, childhood IQ, and cognitive function in old age. Journal of Psychosomatic Research 73, 132–138. https://doi.org/10.1016/j.jpsychores.2012.03.006de Moor, M.H.M., Costa, P.T., Terracciano, A., Krueger, R.F., de Geus, E.J.C., et al., (2012). Meta-analysis of genome-wide association studies for personality. Mol Psychiatry 17, 337–349. https://doi.org/10.1038/mp.2010.128Deary, I. J., Gow, A.J., Pattie, A., Starr, J.M., (2012a). Cohort Profile: The Lothian Birth Cohorts of 1921 and 1936. International Journal of Epidemiology 41, 1576–1584. https://doi.org/10.1093/ije/dyr197Deary, I. J., Starr, J.M., Johnson, W., (2012b). Cognitive and Bio-Psychosocial Wellbeing in the Lothian Birth Cohort 1936. European Journal of Public Health 22, 102–103.Deary, Ian J., Yang, J., Davies, G., Harris, S.E., Tenesa, A., et al., (2012). Genetic contributions to stability and change in intelligence from childhood to old age. Nature 482, 212–215. https://doi.org/10.1038/nature10781Dunlop, M.G., Dobbins, S.E., Farrington, S.M., Jones, A.M., Palles, C., et al., (2012). Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat Genet 44, 770–776. https://doi.org/10.1038/ng.2293Dykiert, D., Bates, T.C., Gow, A.J., Penke, L., Starr, J.M., et al., (2012). Predicting Mortality From Human Faces. Psychosomatic Medicine 74, 560–566. https://doi.org/10.1097/PSY.0b013e318259c33fFranceschini, N., van Rooij, F.J.A., Prins, B.P., Feitosa, M.F., Karakas, M., et al., (2012). Discovery and Fine Mapping of Serum Protein Loci through Transethnic Meta-analysis. The American Journal of Human Genetics 91, 744–753. https://doi.org/10.1016/j.ajhg.2012.08.021Gale, C.R., Cooper, R., Craig, L., Elliott, J., Kuh, D., et al., (2012). Cognitive Function in Childhood and Lifetime Cognitive Change in Relation to Mental Wellbeing in Four Cohorts of Older People. PLoS ONE 7, e44860. https://doi.org/10.1371/journal.pone.0044860Gerrish, A., Russo, G., Richards, A., Moskvina, V., Ivanov, D., et al., (2012). The Role of Variation at AβPP, PSEN1, PSEN2, and MAPT in Late Onset Alzheimer’s Disease. JAD 28, 377–387. https://doi.org/10.3233/JAD-2011-110824Gow, A. J., Bastin, M.E., Munoz Maniega, S., Valdes Hernandez, M.C., Morris, Z., et al., (2012). Neuroprotective lifestyles and the aging brain: Activity, atrophy, and white matter integrity. Neurology 79, 1802–1808. https://doi.org/10.1212/WNL.0b013e3182703fd2Gow, Alan J., Corley, J., Starr, J.M., Deary, I.J., (2012a). Reverse causation in activity-cognitive ability associations: The Lothian Birth Cohort 1936.. Psychology and Aging 27, 250–255. https://doi.org/10.1037/a0024144Gow, Alan J., Johnson, W., Mishra, G., Richards, M., Kuh, D., et al., (2012b). Is age kinder to the initially more able?: Yes, and no. Intelligence 40, 49–59. https://doi.org/10.1016/j.intell.2011.10.007Grinton, M.E., Laude, A., MacGillivray, T., Henderson, R., Starr, J.M., et al., (2012). The Association Between Retinal Vessel Morphology and Retinal Nerve Fiber Layer Thickness in an Elderly Population. Ophthalmic Surg Lasers Imaging 43, S61–S66. https://doi.org/10.3928/15428877-20120802-03Hagger-Johnson, G., Mõttus, R., Craig, L.C.A., Starr, J.M., Deary, I.J., (2012). Pathways from childhood intelligence and socioeconomic status to late-life cardiovascular disease risk.. Health Psychology 31, 403–412. https://doi.org/10.1037/a0026775Hamilton, G., Harris, S.E., Davies, G., Liewald, D.C., Tenesa, A., et al., (2012). The role of ECE1 variants in cognitive ability in old age and Alzheimer’s disease risk. Am. J. Med. Genet. 159B, 696–709. https://doi.org/10.1002/ajmg.b.32073Harris, S.E., Martin-Ruiz, C., von Zglinicki, T., Starr, J.M., Deary, I.J., (2012). Telomere length and aging biomarkers in 70-year-olds: the Lothian Birth Cohort 1936. Neurobiology of Aging 33, 1486.e3-1486.e8. https://doi.org/10.1016/j.neurobiolaging.2010.11.013Hernandez, M. del C.V., Royle, N.A., Jackson, M.R., Maniega, S.M., Penke, L., et al., (2012). Color Fusion of Magnetic Resonance Images Improves Intracranial Volume Measurement in Studies of Aging. OJRad 02, 1–9. https://doi.org/10.4236/ojrad.2012.21001Hope, D., Bates, T., Gow, A.J., Starr, J.M., Deary, I.J., (2012). Minor Physical Anomalies, Intelligence, and Cognitive Decline. Experimental Aging Research 38, 265–278. https://doi.org/10.1080/0361073X.2012.672126Johnson, W., Gow, A.J., Corley, J., Redmond, P., Henderson, R., et al., (2012). Can we spot deleterious ageing in two waves of data? The Lothian Birth Cohort 1936 from ages 70 to 73. LLCS. https://doi.org/10.14301/llcs.v3i3.198Kilgour, A.H.M., Subedi, D., Gray, C.D., Deary, I.J., Lawrie, S.M., et al., (2012). Design and Validation of a Novel Method to Measure Cross-Sectional Area of Neck Muscles Included during Routine MR Brain Volume Imaging. PLoS ONE 7, e34444. https://doi.org/10.1371/journal.pone.0034444Lefevre, C.E., Lewis, G.J., Bates, T.C., Dzhelyova, M., Coetzee, V., et al., (2012). No evidence for sexual dimorphism of facial width-to-height ratio in four large adult samples. Evolution and Human Behavior 33, 623–627. https://doi.org/10.1016/j.evolhumbehav.2012.03.002Lopez, Lorna M., Bastin, M.E., Maniega, S.M., Penke, L., Davies, G., et al., (2012). A genome-wide search for genetic influences and biological pathways related to the brain’s white matter integrity. Neurobiology of Aging 33, 1847.e1-1847.e14. https://doi.org/10.1016/j.neurobiolaging.2012.02.003Lopez, Lorna M, Harris, S.E., Luciano, M., Liewald, D., Davies, G., et al., (2012). Evolutionary conserved longevity genes and human cognitive abilities in elderly cohorts. Eur J Hum Genet 20, 341–347. https://doi.org/10.1038/ejhg.2011.201Luciano, M., Huffman, J.E., Arias-Vásquez, A., Vinkhuyzen, A.A.E., Middeldorp, C.M., et al., (2012a). Genome-wide association uncovers shared genetic effects among personality traits and mood states. Am. J. Med. Genet. 159B, 684–695. https://doi.org/10.1002/ajmg.b.32072Luciano, M., Lopez, L.M., de Moor, M.H.M., Harris, S.E., Davies, G., et al., (2012b). Longevity candidate genes and their association with personality traits in the elderly. Am. J. Med. Genet. 159B, 192–200. https://doi.org/10.1002/ajmg.b.32013Luciano, M., MacLeod, A.K., Payton, A., Davies, G., Ke, X., et al., (2012c). Effects of gene copy number variants on personality and mood in ageing cohorts. Personality and Individual Differences 53, 393–397. https://doi.org/10.1016/j.paid.2011.12.019Luciano, M., Mõttus, R., Starr, J.M., McNeill, G., Jia, X., et al., (2012d). Depressive symptoms and diet: Their effects on prospective inflammation levels in the elderly. Brain, Behavior, and Immunity 26, 717–720. https://doi.org/10.1016/j.bbi.2011.10.007MacLeod, A.K., Davies, G., Payton, A., Tenesa, A., Harris, S.E., et al., (2012). Genetic Copy Number Variation and General Cognitive Ability. PLoS ONE 7, e37385. https://doi.org/10.1371/journal.pone.0037385McQuillan, R., Eklund, N., Pirastu, N., Kuningas, M., McEvoy, B.P., et al., (2012). Evidence of Inbreeding Depression on Human Height. PLoS Genet 8, e1002655. https://doi.org/10.1371/journal.pgen.1002655Mõttus, R., Gale, C.R., Starr, J.M., Deary, I.J., (2012a). ‘On the street where you live’: Neighbourhood deprivation and quality of life among community-dwelling older people in Edinburgh, Scotland. Social Science & Medicine 74, 1368–1374. https://doi.org/10.1016/j.socscimed.2011.12.050Mõttus, R., Johnson, W., Deary, I.J., (2012b). Personality traits in old age: Measurement and rank-order stability and some mean-level change.. Psychology and Aging 27, 243–249. https://doi.org/10.1037/a0023690Mõttus, R., Johnson, W., Starr, J.M., Deary, I.J., (2012c). Correlates of personality trait levels and their changes in very old age: The Lothian Birth Cohort 1921. Journal of Research in Personality 46, 271–278. https://doi.org/10.1016/j.jrp.2012.02.004Murray, C., Pattie, A., Starr, J.M., Deary, I.J., (2012). Does cognitive ability predict mortality in the ninth decade? The Lothian Birth Cohort 1921. Intelligence 40, 490–498. https://doi.org/10.1016/j.intell.2012.05.003Penke, L, Maniega, S.M., Bastin, M.E., Valdés Hernández, M.C., Murray, C., et al., (2012). Brain white matter tract integrity as a neural foundation for general intelligence. Mol Psychiatry 17, 1026–1030. https://doi.org/10.1038/mp.2012.66Penke, Lars, Valdés Hernandéz, M.C., Maniega, S.M., Gow, A.J., Murray, C., et al., (2012). Brain iron deposits are associated with general cognitive ability and cognitive aging. Neurobiology of Aging 33, 510-517.e2. https://doi.org/10.1016/j.neurobiolaging.2010.04.032Schiepers, O.J.G., Harris, S.E., Gow, A.J., Pattie, A., Brett, C.E., et al., (2012). APOE E4 status predicts age-related cognitive decline in the ninth decade: longitudinal follow-up of the Lothian Birth Cohort 1921. Mol Psychiatry 17, 315–324. https://doi.org/10.1038/mp.2010.137Stein, J.L., Vasquez, A.A., Hibar, D.P., Senstad, R.E., Winkler, A.M., et al., (2012). Identification of common variants associated with human hippocampal and intracranial volumes. Nat Genet 44, 552–561. https://doi.org/10.1038/ng.2250Stolk, L., Perry, J.R.B., Chasman, D.I., He, C., Mangino, M., et al., (2012). Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. Nat Genet 44, 260–268. https://doi.org/10.1038/ng.1051Tang, W., Schwienbacher, C., Lopez, L.M., Ben-Shlomo, Y., Oudot-Mellakh, T., et al., (2012). Genetic Associations for Activated Partial Thromboplastin Time and Prothrombin Time, their Gene Expression Profiles, and Risk of Coronary Artery Disease. The American Journal of Human Genetics 91, 152–162. https://doi.org/10.1016/j.ajhg.2012.05.009Traylor, M., Farrall, M., Holliday, E.G., Sudlow, C., Hopewell, J.C., et al., (2012). Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE Collaboration): a meta-analysis of genome-wide association studies. The Lancet Neurology 11, 951–962. https://doi.org/10.1016/S1474-4422(12)70234-XValdés Hernández, M. del C., Gallacher, P.J., Bastin, M.E., Royle, N.A., Maniega, S.M., et al., (2012). Automatic segmentation of brain white matter and white matter lesions in normal aging: comparison of five multispectral techniques. Magnetic Resonance Imaging 30, 222–229. https://doi.org/10.1016/j.mri.2011.09.016van der Harst, P., Zhang, W., Mateo Leach, I., Rendon, A., Verweij, N., et al., (2012). Seventy-five genetic loci influencing the human red blood cell. Nature 492, 369–375. https://doi.org/10.1038/nature11677Vinkhuyzen, A.A.E., Pedersen, N.L., Yang, J., Lee, S.H., Magnusson, P.K.E., et al., (2012). Common SNPs explain some of the variation in the personality dimensions of neuroticism and extraversion. Transl Psychiatry 2, e102–e102. https://doi.org/10.1038/tp.2012.27von Stumm, S., Deary, I.J., (2012). Typical intellectual engagement and cognition in the ninth decade of life: The Lothian Birth Cohort 1921.. Psychology and Aging 27, 761–767. https://doi.org/10.1037/a0026527Waiyavutti, C., Johnson, W., Deary, I.J., (2012). Do personality scale items function differently in people with high and low IQ?. Psychological Assessment 24, 545–555. https://doi.org/10.1037/a0026266Wilk, J.B., Shrine, N.R.G., Loehr, L.R., Zhao, J.H., Manichaikul, A., et al., (2012). Genome-Wide Association Studies Identify CHRNA5/3 and HTR4 in the Development of Airflow Obstruction. Am J Respir Crit Care Med 186, 622–632. https://doi.org/10.1164/rccm.201202-0366OCZammit, A.R., Starr, J.M., Johnson, W., Deary, I.J., (2012). Profiles of physical, emotional and psychosocial wellbeing in the Lothian birth cohort 1936. BMC Geriatr 12, 64. https://doi.org/10.1186/1471-2318-12-64 2011Alfred, T., Ben-Shlomo, Y., Cooper, R., Hardy, R., Cooper, C., et al., (2011a). ACTN3 genotype, athletic status, and life course physical capability: meta-analysis of the published literature and findings from nine studies. Hum. Mutat. 32, 1008–1018. https://doi.org/10.1002/humu.21526Alfred, T., Ben-Shlomo, Y., Cooper, R., Hardy, R., Cooper, C., et al., (2011b). Absence of association of a single-nucleotide polymorphism in the TERT-CLPTM1L locus with age-related phenotypes in a large multicohort study: the HALCyon programme: TERT SNP and age-related phenotypes. Aging Cell 10, 520–532. https://doi.org/10.1111/j.1474-9726.2011.00687.xAllerhand, M., Ting Ooi, E., Starr, R.J., Alcorn, M., Penke, L., et al., (2011). Skin ageing and oxidative stress in a narrow-age cohort of older adults. European Geriatric Medicine 2, 140–144. https://doi.org/10.1016/j.eurger.2011.04.009Artigas, M.S., Loth, D.W., Wain, L.V., Gharib, S.A., Obeidat, M., et al., (2011). Genome-wide association and large-scale follow up identifies 16 new loci influencing lung function. Nat Genet 43, 1082–1090. https://doi.org/10.1038/ng.941Birnie, K., Cooper, R., Martin, R.M., Kuh, D., Sayer, A.A., et al., (2011). Childhood Socioeconomic Position and Objectively Measured Physical Capability Levels in Adulthood: A Systematic Review and Meta-Analysis. PLoS ONE 6, e15564. https://doi.org/10.1371/journal.pone.0015564Butchart, C., Kyle, J., McNeill, G., Corley, J., Gow, A.J., et al., (2011). Flavonoid intake in relation to cognitive function in later life in the Lothian Birth Cohort 1936. Br J Nutr 106, 141–148. https://doi.org/10.1017/S0007114510005738Cooper, R., Hardy, R., Aihie Sayer, A., Ben-Shlomo, Y., Birnie, K., et al., (2011). Age and Gender Differences in Physical Capability Levels from Mid-Life Onwards: The Harmonisation and Meta-Analysis of Data from Eight UK Cohort Studies. PLoS ONE 6, e27899. https://doi.org/10.1371/journal.pone.0027899Corley, J., Jia, X., Brett, C.E., Gow, A.J., Starr, J.M., et al., (2011). Alcohol intake and cognitive abilities in old age: The Lothian Birth Cohort 1936 study.. Neuropsychology 25, 166–175. https://doi.org/10.1037/a0021571Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S.E., et al., (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Mol Psychiatry 16, 996–1005. https://doi.org/10.1038/mp.2011.85Deary, I.J., Johnson, W., Gow, A.J., Pattie, A., Brett, C.E., et al., (2011). Losing One’s Grip: A Bivariate Growth Curve Model of Grip Strength and Nonverbal Reasoning From Age 79 to 87 Years in the Lothian Birth Cohort 1921. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences 66B, 699–707. https://doi.org/10.1093/geronb/gbr059Frank, R.A.W., McRae, A.F., Pocklington, A.J., van de Lagemaat, L.N., Navarro, P., et al., (2011). Clustered Coding Variants in the Glutamate Receptor Complexes of Individuals with Schizophrenia and Bipolar Disorder. PLoS ONE 6, e19011. https://doi.org/10.1371/journal.pone.0019011Gale, C.R., Sayer, A.A., Cooper, C., Dennison, E.M., Starr, J.M., et al., (2011). Factors associated with symptoms of anxiety and depression in five cohorts of community-based older people: the HALCyon (Healthy Ageing across the Life Course) Programme. Psychol. Med. 41, 2057–2073. https://doi.org/10.1017/S0033291711000195Gieger, C., Radhakrishnan, A., Cvejic, A., Tang, W., Porcu, E., et al., (2011). New gene functions in megakaryopoiesis and platelet formation. Nature 480, 201–208. https://doi.org/10.1038/nature10659Gow, A.J., Johnson, W., Pattie, A., Brett, C.E., Roberts, B., et al., (2011a). Stability and change in intelligence from age 11 to ages 70, 79, and 87: The Lothian Birth Cohorts of 1921 and 1936.. Psychology and Aging 26, 232–240. https://doi.org/10.1037/a0021072Gow, A.J., Watson, R., Whiteman, M., Deary, I.J., (2011b). A Stairway to Heaven? Structure of the Religious Involvement Inventory and Spiritual Well-Being Scale. J Relig Health 50, 5–19. https://doi.org/10.1007/s10943-010-9375-2Hamilton, G., Harris, S.E., Davies, G., Liewald, D.C., Tenesa, A., et al., (2011). Alzheimer’s Disease Genes Are Associated with Measures of Cognitive Ageing in the Lothian Birth Cohorts of 1921 and 1936. International Journal of Alzheimer’s Disease 2011, 1–11. https://doi.org/10.4061/2011/505984Henderson, R.D., Allerhand, M., Patton, N., Pattie, A., Gow, A.J., et al., (2011). Vision and intelligence at age 83 in the Lothian Birth Cohort 1921. Intelligence 39, 148–154. https://doi.org/10.1016/j.intell.2011.02.005Hope, D., Bates, T., Penke, L., Gow, A.J., Starr, J.M., et al., (2011). Fluctuating Asymmetry and personality. Personality and Individual Differences 50, 49–52. https://doi.org/10.1016/j.paid.2010.08.020Johnson, W., Corley, J., Starr, J.M., Deary, I.J., (2011). Psychological and physical health at age 70 in the Lothian Birth Cohort 1936: Links with early life IQ, SES, and current cognitive function and neighborhood environment.. Health Psychology 30, 1–11. https://doi.org/10.1037/a0021834Johnson, W., Deary, I.J., (2011). Placing inspection time, reaction time, and perceptual speed in the broader context of cognitive ability: The VPR model in the Lothian Birth Cohort 1936. Intelligence 39, 405–417. https://doi.org/10.1016/j.intell.2011.07.003Lopez, L.M., Mullen, W., Zürbig, P., Harris, S.E., Gow, A.J., et al., (2011). A pilot study of urinary peptides as biomarkers for intelligence in old age. Intelligence 39, 46–53. https://doi.org/10.1016/j.intell.2010.11.001Lu, C.-K., Tang, T.B., Laude, A., Deary, I.J., Dhillon, B., et al., (2011). Quantification of Parapapillary Atrophy and Optic Disc. Invest. Ophthalmol. Vis. Sci. 52, 4671. https://doi.org/10.1167/iovs.10-6572Luciano, M., Hansell, N.K., Lahti, J., Davies, G., Medland, S.E., et al., (2011). Whole genome association scan for genetic polymorphisms influencing information processing speed. Biological Psychology 86, 193–202. https://doi.org/10.1016/j.biopsycho.2010.11.008Marioni, R.E., Deary, I.J., Murray, G.D., Lowe, G.D.O., Strachan, M.W.J., et al., (2011). Genetic Associations Between Fibrinogen and Cognitive Performance in Three Scottish Cohorts. Behav Genet 41, 691–699. https://doi.org/10.1007/s10519-011-9449-2McNeill, G., Jia, X., Whalley, L.J., Fox, H.C., Corley, J., et al., (2011). Antioxidant and B vitamin intake in relation to cognitive function in later life in the Lothian Birth Cohort 1936. Eur J Clin Nutr 65, 619–626. https://doi.org/10.1038/ejcn.2011.2Middeldorp, C.M., de Moor, M.H.M., McGrath, L.M., Gordon, S.D., Blackwood, D.H., et al., (2011). The genetic association between personality and major depression or bipolar disorder. A polygenic score analysis using genome-wide association data. Transl Psychiatry 1, e50–e50. https://doi.org/10.1038/tp.2011.45Murray, C., Brett, C.E., Starr, J.M., Deary, I.J., (2011a). Which aspects of subjectively reported quality of life are important in predicting mortality beyond known risk factors? The Lothian Birth Cohort 1921 Study. Qual Life Res 20, 81–90. https://doi.org/10.1007/s11136-010-9718-1Murray, C., Johnson, W., Wolf, M.S., Deary, I.J., (2011b). The association between cognitive ability across the lifespan and health literacy in old age: The Lothian Birth Cohort 1936. Intelligence 39, 178–187. https://doi.org/10.1016/j.intell.2011.04.001Rizzi, T.S., Arias-Vasquez, A., Rommelse, N., Kuntsi, J., Anney, R., et al., (2011). The ATXN1 and TRIM31 genes are related to intelligence in an ADHD background: Evidence from a large collaborative study totaling 4,963 Subjects. Am. J. Med. Genet. 156, 145–157. https://doi.org/10.1002/ajmg.b.31149Schiepers, O.J.G., van Boxtel, M.P.J., Harris, S.E., Gow, A.J., Pattie, A., et al., (2011). MTHFR polymorphisms and cognitive ageing in the ninth decade: the Lothian Birth Cohort 1921. Genes, Brain and Behavior 10, 354–364. https://doi.org/10.1111/j.1601-183X.2010.00675.xSmith, N.L., Huffman, J.E., Strachan, D.P., Huang, J., Dehghan, A., et al., (2011). Genetic Predictors of Fibrin D-Dimer Levels in Healthy Adults. Circulation 123, 1864–1872. https://doi.org/10.1161/CIRCULATIONAHA.110.009480Starr, J.M., Deary, I.J., (2011). Socio-economic position predicts grip strength and its decline between 79 and 87 years: the Lothian Birth Cohort 1921. Age and Ageing 40, 749–752. https://doi.org/10.1093/ageing/afr070Starr, John M., Deary, I.J., (2011). Sex differences in blood cell counts in the Lothian Birth Cohort 1921 between 79 and 87 years. Maturitas 69, 373–376. https://doi.org/10.1016/j.maturitas.2011.05.007Starr, J.M., Deary, I.J., (2011). Blood pressure, socio-economic status and health in the Lothian 1921 birth cohort: A longitudinal study. Public Health 125, 196–200. https://doi.org/10.1016/j.puhe.2010.11.017Valdés Hernández, M.C., Jeong, T.H., Murray, C., Bastin, M.E., Chappell, F.M., et al., (2011). Reliability of two techniques for assessing cerebral iron deposits with structural magnetic resonance imaging. J. Magn. Reson. Imaging 33, 54–61. https://doi.org/10.1002/jmri.22361Wain, L.V., Verwoert, G.C., O’Reilly, P.F., Shi, G., Johnson, T., et al., (2011). Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet 43, 1005–1011. https://doi.org/10.1038/ng.922Wardlaw, J.M., Bastin, M.E., Valdes Hernandez, M., Muñoz Maniega, S., Royle, N.A., et al., (2011). Brain Ageing, Cognition in Youth and Old Age, and Vascular Disease in the Lothian Birth Cohort 1936: Rationale, Design and Methodology of the Imaging Protocol. International Journal of Stroke 6, 547–559. https://doi.org/10.1111/j.1747-4949.2011.00683.x. 2010Corley, J., Gow, A.J., Starr, J.M., Deary, I.J., (2010a). Is body mass index in old age related to cognitive abilities? The Lothian Birth Cohort 1936 Study.. Psychology and Aging 25, 867–875. https://doi.org/10.1037/a0020301Corley, J., Jia, X., Kyle, J.A.M., Gow, A.J., Brett, C.E., et al., (2010b). Caffeine Consumption and Cognitive Function at Age 70: The Lothian Birth Cohort 1936 Study:. Psychosomatic Medicine 72, 206–214. https://doi.org/10.1097/PSY.0b013e3181c92a9cDeary, I.J., Johnson, W., Starr, J.M., (2010). Are processing speed tasks biomarkers of cognitive aging?. Psychology and Aging 25, 219–228. https://doi.org/10.1037/a0017750Dhillon, B., Wright, A.F., Tufail, A., Pappworth, I., Hayward, C., et al., (2010). Complement Factor H Autoantibodies and Age-Related Macular Degeneration. Invest. Ophthalmol. Vis. Sci. 51, 5858. https://doi.org/10.1167/iovs.09-5124Fieo, R., Watson, R., Deary, I.J., Starr, J.M., (2010). A Revised Activities of Daily Living/Instrumental Activities of Daily Living Instrument Increases Interpretive Power: Theoretical Application for Functional Tasks Exercise. Gerontology 56, 483–490. https://doi.org/10.1159/000271603Gale, C.R., Allerhand, M., Sayer, A.A., Cooper, C., Dennison, E.M., et al., (2010). The structure of the Hospital Anxiety and Depression Scale in four cohorts of community-based, healthy older people: the HALCyon program. Int. Psychogeriatr. 22, 559–571. https://doi.org/10.1017/S1041610210000256Haggarty, P., Hoad, G., Harris, S.E., Starr, J.M., Fox, H.C., et al., (2010). Human Intelligence and Polymorphisms in the DNA Methyltransferase Genes Involved in Epigenetic Marking. PLoS ONE 5, e11329. https://doi.org/10.1371/journal.pone.0011329Harris, S.E., Hennah, W., Thomson, P.A., Luciano, M., Starr, J.M., et al., (2010). Variation in DISC1 is associated with anxiety, depression and emotional stability in elderly women. Mol Psychiatry 15, 232–234. https://doi.org/10.1038/mp.2009.88Houlihan, Lorna M., Davies, G., Tenesa, A., Harris, S.E., Luciano, M., et al., (2010a). Common Variants of Large Effect in F12, KNG1, and HRG Are Associated with Activated Partial Thromboplastin Time. The American Journal of Human Genetics 86, 626–631. https://doi.org/10.1016/j.ajhg.2010.02.016Houlihan, Lorna M., Harris, S.E., Deary, I.J., Starr, J.M., (2010b). Replication association analysis of S100B and cognitive ageing.. Psychiatric Genetics 20, 133–134. https://doi.org/10.1097/YPG.0b013e32833a2096Houlihan, L. M., Wyatt, N.D., Harris, S.E., Hayward, C., Gow, A.J., et al., (2010). Variation in the uric acid transporter gene (SLC2A9) and memory performance. Human Molecular Genetics 19, 2321–2330. https://doi.org/10.1093/hmg/ddq097International Stroke Genetics Consortium and Wellcome Trust Case–Control Consortium 2, (2010). Failure to Validate Association between 12p13 Variants and Ischemic Stroke. N Engl J Med 362, 1547–1550. https://doi.org/10.1056/NEJMc0910050Johnson, W., Brett, C.E., Deary, I.J., (2010a). Intergenerational class mobility in Britain: A comparative look across three generations in the Lothian Birth Cohort 1936. Intelligence 38, 268–281. https://doi.org/10.1016/j.intell.2009.11.010Johnson, W., Brett, C.E., Deary, I.J., (2010b). The pivotal role of education in the association between ability and social class attainment: A look across three generations. Intelligence 38, 55–65. https://doi.org/10.1016/j.intell.2009.11.008Johnson, W., Gow, A.J., Corley, J., Starr, J.M., Deary, I.J., (2010c). Location in cognitive and residential space at age 70 reflects a lifelong trait over parental and environmental circumstances: The Lothian Birth Cohort 1936. Intelligence 38, 402–411. https://doi.org/10.1016/j.intell.2010.04.001Luciano, M., Houlihan, L.M., Harris, S.E., Gow, A.J., Hayward, C., et al., (2010). Association of Existing and New Candidate Genes for Anxiety, Depression and Personality Traits in Older People. Behav Genet 40, 518–532. https://doi.org/10.1007/s10519-009-9326-4Marioni, R.E., Deary, I.J., Murray, G.D., Lowe, G.D.O., Rafnsson, S.B., et al., (2010). Genetic Variants Associated With Altered Plasma Levels of C-Reactive Protein are not Associated With Late-Life Cognitive Ability in Four Scottish Samples. Behav Genet 40, 3–11. https://doi.org/10.1007/s10519-009-9302-zMcIlhagger, R., Gow, A.J., Brett, C.E., Corley, J., Taylor, M., et al., (2010). Differences in the haematological profile of healthy 70 year old men and women: normal ranges with confirmatory factor analysis. BMC Hematol 10, 4. https://doi.org/10.1186/1471-2326-10-4Penke, Lars, Maniega, S.M., Houlihan, L.M., Murray, C., Gow, A.J., et al., (2010). White Matter Integrity in the Splenium of the Corpus Callosum is Related to Successful Cognitive Aging and Partly Mediates the Protective Effect of an Ancestral Polymorphism in ADRB2. Behav Genet 40, 146–156. https://doi.org/10.1007/s10519-009-9318-4Penke, L., Maniega, S.M., Murray, C., Gow, A.J., Valdes Hernandez, M.C., et al., (2010). A General Factor of Brain White Matter Integrity Predicts Information Processing Speed in Healthy Older People. Journal of Neuroscience 30, 7569–7574. https://doi.org/10.1523/JNEUROSCI.1553-10.2010Shenkin, S.D., Bastin, M.E., MacGillivray, T.J., Eadie, E., Deary, I.J., et al., (2010). Carotid Intima-Media Thickness and Cerebrovascular Disease in Community-Dwelling Older People Without Stroke. Stroke 41, 2083–2086. https://doi.org/10.1161/STROKEAHA.110.590505Starr, J.M., Deary, I.J., (2010). Renal function in a narrow-age cohort of adults at 79 and 87 years. Age and Ageing 39, 750–752. https://doi.org/10.1093/ageing/afq103Starr, J.M., Kilgour, A., Pattie, A., Gow, A., Bates, T.C., et al., (2010). Height and intelligence in the Lothian Birth Cohort 1921: a longitudinal study. Age and Ageing 39, 272–275. https://doi.org/10.1093/ageing/afp258Tam, G.W.C., van de Lagemaat, L.N., Redon, R., Strathdee, K.E., Croning, M.D.R., et al., (2010). Confirmed rare copy number variants implicate novel genes in schizophrenia. Biochm. Soc. Trans. 38, 445–451. https://doi.org/10.1042/BST0380445 2009Bastin, M.E., Clayden, J.D., Pattie, A., Gerrish, I.F., Wardlaw, J.M., et al., (2009). Diffusion tensor and magnetization transfer MRI measurements of periventricular white matter hyperintensities in old age. Neurobiology of Aging 30, 125–136. https://doi.org/10.1016/j.neurobiolaging.2007.05.013Bates, T.C., Price, J.F., Harris, S.E., Marioni, R.E., Fowkes, F.G.R., et al., (2009). Association of KIBRA and memory. Neuroscience Letters 458, 140–143. https://doi.org/10.1016/j.neulet.2009.04.050Bochdanovits, Z., Gosso, F.M., van den Berg, L., Rizzu, P., Polderman, T.J.C., et al., (2009). A Functional Polymorphism under Positive Evolutionary Selection in ADRB2 is Associated with Human Intelligence with Opposite Effects in the Young and the Elderly. Behav Genet 39, 15–23. https://doi.org/10.1007/s10519-008-9233-0Hennah, W., Thomson, P., McQuillin, A., Bass, N., Loukola, A., et al., (2009). DISC1 association, heterogeneity and interplay in schizophrenia and bipolar disorder. Mol Psychiatry 14, 865–873. https://doi.org/10.1038/mp.2008.22Houlihan, L.M., Harris, S.E., Luciano, M., Gow, A.J., Starr, J.M., et al., (2009). Replication study of candidate genes for cognitive abilities: the Lothian Birth Cohort 1936. Genes, Brain and Behavior 8, 238–247. https://doi.org/10.1111/j.1601-183X.2008.00470.xKnight, H.M., Pickard, B.S., Maclean, A., Malloy, M.P., Soares, D.C., et al., (2009). A Cytogenetic Abnormality and Rare Coding Variants Identify ABCA13 as a Candidate Gene in Schizophrenia, Bipolar Disorder, and Depression. The American Journal of Human Genetics 85, 833–846. https://doi.org/10.1016/j.ajhg.2009.11.003Le Hellard, S., Håvik, B., Espeseth, T., Breilid, H., Løvlie, R., et al., (2009). Variants in Doublecortin- and Calmodulin Kinase Like 1, a Gene Up-Regulated by BDNF, Are Associated with Memory and General Cognitive Abilities. PLoS ONE 4, e7534. https://doi.org/10.1371/journal.pone.0007534Luciano, Michelle, Gow, A.J., Harris, S.E., Hayward, C., Allerhand, M., et al., (2009a). Cognitive ability at age 11 and 70 years, information processing speed, and APOE variation: The Lothian Birth Cohort 1936 study.. Psychology and Aging 24, 129–138. https://doi.org/10.1037/a0014780Luciano, Michelle, Gow, A.J., Taylor, M.D., Hayward, C., Harris, S.E., et al., (2009b). Apolipoprotein E is not Related to Memory Abilities at 70 Years of Age. Behav Genet 39, 6–14. https://doi.org/10.1007/s10519-008-9236-xLuciano, Michelle, Marioni, R.E., Gow, A.J., Starr, J.M., Deary, I.J., (2009c). Reverse Causation in the Association Between C-Reactive Protein and Fibrinogen Levels and Cognitive Abilities in an Aging Sample:. Psychosomatic Medicine 71, 404–409. https://doi.org/10.1097/PSY.0b013e3181a24fb9Luciano, M., Miyajima, F., Lind, P.A., Bates, T.C., Horan, M., et al., (2009). Variation in the dysbindin gene and normal cognitive function in three independent population samples. Genes, Brain and Behavior 8, 218–227. https://doi.org/10.1111/j.1601-183X.2008.00462.xPenke, L., Bates, T.C., Gow, A.J., Pattie, A., Starr, J.M., et al., (2009). Symmetric faces are a sign of successful cognitive aging. Evolution and Human Behavior 30, 429–437. https://doi.org/10.1016/j.evolhumbehav.2009.06.001Shenkin, Susan D., Bastin, M.E., MacGillivray, T.J., Deary, I.J., Starr, J.M., et al., (2009). Birth Parameters Are Associated With Late-Life White Matter Integrity in Community-Dwelling Older People. Stroke 40, 1225–1228. https://doi.org/10.1161/STROKEAHA.108.527259Shenkin, Susan D, Rivers, C.S., Deary, I.J., Starr, J.M., Wardlaw, J.M., (2009). Maximum (prior) brain size, not atrophy, correlates with cognition in community-dwelling older people: a cross-sectional neuroimaging study. BMC Geriatr 9, 12. https://doi.org/10.1186/1471-2318-9-12 2008Gow, A.J., Johnson, W., Pattie, A., Whiteman, M.C., Starr, J., et al., (2008). Mental Ability in Childhood and Cognitive Aging. Gerontology 54, 177–186. https://doi.org/10.1159/000118098Johnson, W., Harris, S.E., Starr, J.M., Whalley, L.J., Deary, I.J., (2008). PPARG Pro12Ala genotype and risk of cognitive decline in elders? Maybe with diabetes. Neuroscience Letters 434, 50–55. https://doi.org/10.1016/j.neulet.2008.01.027Luciano, M., Lind, P.A., Deary, I.J., Payton, A., Posthuma, D., et al., (2008). Testing replication of a 5-SNP set for general cognitive ability in six population samples. Eur J Hum Genet 16, 1388–1395. https://doi.org/10.1038/ejhg.2008.100McGurn, B., Deary, I.J., Starr, J.M., (2008). Childhood cognitive ability and risk of late-onset Alzheimer and vascular dementia. Neurology 71, 1051–1056. https://doi.org/10.1212/01.wnl.0000319692.20283.10Shenkin, S.D., Starr, J.M., Dunn, J.M., Carter, S., Deary, I.J., (2008). Is there information contained within the sentence-writing component of the mini mental state examination? A retrospective study of community dwelling older people. Int. J. Geriat. Psychiatry 23, 1283–1289. https://doi.org/10.1002/gps.2066Starr, J. M., Pattie, A., Whalley, L.J., Deary, I.J., (2008). Predictors of tooth loss in the 1921 Lothian Birth Cohort. Age and Ageing 37, 111–114. https://doi.org/10.1093/ageing/afm160Starr, John M., Shiels, P.G., Harris, S.E., Pattie, A., Pearce, M.S., et al., (2008). Oxidative stress, telomere length and biomarkers of physical aging in a cohort aged 79 years from the 1932 Scottish Mental Survey. Mechanisms of Ageing and Development 129, 745–751. https://doi.org/10.1016/j.mad.2008.09.020Tenesa, A., Farrington, S.M., Prendergast, J.G.D., Porteous, M.E., Walker, M., et al., (2008). Genome-wide association scan identifies a colorectal cancer susceptibility locus on 11q23 and replicates risk loci at 8q24 and 18q21. Nat Genet 40, 631–637. https://doi.org/10.1038/ng.133 2007Deary, I.J., Gow, A.J., Taylor, M.D., Corley, J., Brett, C., et al., (2007). The Lothian Birth Cohort 1936: a study to examine influences on cognitive ageing from age 11 to age 70 and beyond. BMC Geriatr 7, 28. https://doi.org/10.1186/1471-2318-7-28Gow, A.J., Pattie, A., Whiteman, M.C., Whalley, L.J., Deary, I.J., (2007). Social Support and Successful Aging: Investigating the Relationships Between Lifetime Cognitive Change and Life Satisfaction. Journal of Individual Differences 28, 103–115. https://doi.org/10.1027/1614-0001.28.3.103Harris, S.E., Fox, H., Wright, A.F., Hayward, C., Starr, J.M., et al., (2007). A genetic association analysis of cognitive ability and cognitive ageing using 325 markers for 109 genes associated with oxidative stress or cognition. BMC Genet 8, 43. https://doi.org/10.1186/1471-2156-8-43Johnson, W., Harris, S.E., Collins, P., Starr, J.M., Whalley, L.J., et al., (2007). No association of CETP genotype with cognitive function or age-related cognitive change. Neuroscience Letters 420, 189–192. https://doi.org/10.1016/j.neulet.2007.05.013Mekel-Bobrov, N., Posthuma, D., Gilbert, S.L., Lind, P., Gosso, M.F., et al., (2007). The ongoing adaptive evolution of ASPM and Microcephalin is not explained by increased intelligence. Human Molecular Genetics 16, 600–608. https://doi.org/10.1093/hmg/ddl487Munang, L., Starr, J.M., Whalley, L., Deary, I.J., (2007). Renal function and cognition in the 1932 Scottish Mental Survey Lothian cohort. Age and Ageing 36, 323–325. https://doi.org/10.1093/ageing/afl178Patton, N., Pattie, A., MacGillivray, T., Aslam, T., Dhillon, B., et al., (2007). The Association between Retinal Vascular Network Geometry and Cognitive Ability in an Elderly Population. Invest. Ophthalmol. Vis. Sci. 48, 1995. https://doi.org/10.1167/iovs.06-1123Sisodiya, S.M., Thompson, P.J., Need, A., Harris, S.E., Weale, M.E., et al., (2007). Genetic enhancement of cognition in a kindred with cone-rod dystrophy due to RIMS1 mutation. Journal of Medical Genetics 44, 373–380. https://doi.org/10.1136/jmg.2006.047407Starr, J., Mcgurn, B., Harris, S., Whalley, L., Deary, I., et al., (2007). Association between telomere length and heart disease in a narrow age cohort of older people. Experimental Gerontology 42, 571–573. https://doi.org/10.1016/j.exger.2006.12.002Yates, J.R.W., Sepp, T., Matharu, B.K., Khan, J.C., Thurlby, D.A., et al., (2007). Complement C3 Variant and the Risk of Age-Related Macular Degeneration. N Engl J Med 357, 553–561. https://doi.org/10.1056/NEJMoa072618 2006Deary, I. J., Bastin, M.E., Pattie, A., Clayden, J.D., Whalley, L.J., et al., (2006a). White matter integrity and cognition in childhood and old age. Neurology 66, 505–512. https://doi.org/10.1212/01.wnl.0000199954.81900.e2Deary, Ian J., Hayward, C., Permana, P.A., Nair, S., Whalley, L.J., et al., (2006). Polymorphisms in the gene encoding 11B-hydroxysteroid dehydrogenase type 1 (HSD11B1) and lifetime cognitive change. Neuroscience Letters 393, 74–77. https://doi.org/10.1016/j.neulet.2005.09.047Deary, I. J., Whalley, L.J., Batty, G.D., Starr, J.M., (2006b). Physical fitness and lifetime cognitive change. Neurology 67, 1195–1200. https://doi.org/10.1212/01.wnl.0000238520.06958.6aHarris, Sarah E., Deary, I.J., MacIntyre, A., Lamb, K.J., Radhakrishnan, K., et al., (2006). The association between telomere length, physical health, cognitive ageing, and mortality in non-demented older people. Neuroscience Letters 406, 260–264. https://doi.org/10.1016/j.neulet.2006.07.055Harris, S E, Fox, H., Wright, A.F., Hayward, C., Starr, J.M., et al., (2006). The brain-derived neurotrophic factor Val66Met polymorphism is associated with age-related change in reasoning skills. Mol Psychiatry 11, 505–513. https://doi.org/10.1038/sj.mp.4001799 2005Deary, I.J., Harris, S.E., Fox, H.C., Hayward, C., Wright, A.F., et al., (2005). KLOTHO genotype and cognitive ability in childhood and old age in the same individuals. Neuroscience Letters 378, 22–27. https://doi.org/10.1016/j.neulet.2004.12.005Gow, Alan J., Whiteman, M.C., Pattie, A., Deary, I.J., (2005a). The personality–intelligence interface: insights from an ageing cohort. Personality and Individual Differences 39, 751–761. https://doi.org/10.1016/j.paid.2005.01.028Gow, Alan J., Whiteman, M.C., Pattie, A., Deary, I.J., (2005b). Goldberg’s ‘IPIP’ Big-Five factor markers: Internal consistency and concurrent validation in Scotland. Personality and Individual Differences 39, 317–329. https://doi.org/10.1016/j.paid.2005.01.011Gow, Alan J, Whiteman, M.C., Pattie, A., Whalley, L., Starr, J., et al., (2005). Lifetime intellectual function and satisfaction with life in old age: longitudinal cohort study. BMJ 331, 141–142. https://doi.org/10.1136/bmj.38531.675660.F7Harris, S.E., Wright, A.F., Hayward, C., Starr, J.M., Whalley, L.J., et al., (2005). The functional COMT polymorphism, Val158Met, is associated with logical memory and the personality trait intellect/imagination in a cohort of healthy 79 year olds. Neuroscience Letters 385, 1–6. https://doi.org/10.1016/j.neulet.2005.04.104Kachiwala, S.J., Harris, S.E., Wright, A.F., Hayward, C., Starr, J.M., et al., (2005). Genetic influences on oxidative stress and their association with normal cognitive ageing. Neuroscience Letters 386, 116–120. https://doi.org/10.1016/j.neulet.2005.05.067Thomson, P.A., Harris, S.E., Starr, J.M., Whalley, L.J., Porteous, D.J., et al., (2005). Association between genotype at an exonic SNP in DISC1 and normal cognitive aging. Neuroscience Letters 389, 41–45. https://doi.org/10.1016/j.neulet.2005.07.004 2004Deary, I.J., Whiteman, M.C., Pattie, A., Starr, J.M., Hayward, C., et al., (2004a). Apolipoprotein E Gene Variability and Cognitive Functions at Age 79: A Follow-Up of the Scottish Mental Survey of 1932.. Psychology and Aging 19, 367–371. https://doi.org/10.1037/0882-7974.19.2.367Deary, I.J., Whiteman, M.C., Starr, J.M., Whalley, L.J., Fox, H.C., (2004b). The Impact of Childhood Intelligence on Later Life: Following Up the Scottish Mental Surveys of 1932 and 1947.. Journal of Personality and Social Psychology 86, 130–147. https://doi.org/10.1037/0022-3514.86.1.130McGurn, B., Starr, J.M., Topfer, J.A., Pattie, A., Whiteman, M.C., et al., (2004). Pronunciation of irregular words is preserved in dementia, validating premorbid IQ estimation. Neurology 62, 1184–1186. https://doi.org/10.1212/01.WNL.0000103169.80910.8BSandeep, T.C., Yau, J.L.W., MacLullich, A.M.J., Noble, J., Deary, I.J., et al., (2004). 11β-Hydroxysteroid dehydrogenase inhibition improves cognitive function in healthy elderly men and type 2 diabetics. Proceedings of the National Academy of Sciences 101, 6734–6739. https://doi.org/10.1073/pnas.0306996101Starr, J.M., McGurn, B., Whiteman, M., Pattie, A., Whalley, L.J., et al., (2004). Life long changes in cognitive ability are associated with prescribed medications in old age. Int. J. Geriat. Psychiatry 19, 327–332. https://doi.org/10.1002/gps.1093 2003Deary, I.J., (2003). Smoking and cognitive change from age 11 to age 80. Journal of Neurology, Neurosurgery & Psychiatry 74, 1006–1007. https://doi.org/10.1136/jnnp.74.7.1006Shenkin, S.D., Bastin, M.E., MacGillivray, T.J., Deary, I.J., Starr, J.M., et al., (2003). Childhood and current cognitive function in healthy 80-year-olds: a DT-MRI study:. NeuroReport 345–349. https://doi.org/10.1097/00001756-200303030-00010Visscher, P.M., Tynan, M., Whiteman, M.C., Pattie, A., White, I., et al., (2003). Lack of association between polymorphisms in angiotensin-converting-enzyme and methylenetetrahydrofolate reductase genes and normal cognitive ageing in humans. Neuroscience Letters 347, 175–178. https://doi.org/10.1016/S0304-3940(03)00691-8 2002Deary, I.J., Whiteman, M.C., Pattie, A., Starr, J.M., Hayward, C., et al., (2002). Cognitive change and the APOE ɛ4 allele. Nature 418, 932–932. https://doi.org/10.1038/418932a 2001Shenkin, S.D., (2001). Birth weight and cognitive function at age 11 years: the Scottish Mental Survey 1932. Archives of Disease in Childhood 85, 189–196. https://doi.org/10.1136/adc.85.3.18 This article was published on 2023-11-23