LBC Reunion Newsletter 2025

THE UNIVERSITY of EDINBURGH Lothian Birth Cohorts Reunion Tuesday 17th June 2025

Welcome!

Welcome to this special edition of the Lothian Birth Cohorts newsletter, capturing highlights from our LBC1936 Reunion, held on 17th June 2025. We were delighted to welcome nearly 200 guests to the Edinburgh Futures Institute for this special event, including many participants from the LBC1936 study. We hope that everyone enjoyed hearing the team speak about the exciting research your data generates, the tea, coffee and cake, and the LBC tote bag and gift; a small token of our appreciation. For those unable to attend, this newsletter is our way of ensuring that you're

part of the celebration and up to date on the latest developments. We hope you enjoy the stories, statistics, and sincere thanks shared throughout.

Professor Simon Cox: Address from the Study Director

Our reunion this year opened with a warm (albeit cold-stricken!) welcome from LBC Study Director, **Professor Simon Cox**. Simon began by celebrating our latest milestone: the near-completion of Wave 7 of LBC1936 data collection. Over the course of more than 14 months and 447 days of testing, the team has seen 192 of our participants once again — an incredible achievement that reflects your continued enthusiasm and commitment. Most participants also contributed brain scans, with 132 completed. Simon also shared some reflections on the history and scale of the Lothian Birth Cohorts. From your first visit at age 70 to now, age 88 or

89, you have helped to build an extraordinarily rich dataset that is unlike any other in the world. The study now includes cognitive tests, detailed data on lifestyles, social and demographic backgrounds, and psychosocial factors including mood, wellbeing, and social connections, MRI scans, eye and artery imaging, blood and urine samples, and even stored stem cells. Some of you have generously agreed to donate brain tissue to further research after life — an exceptional legacy. We thank you deeply for this.

In recent years, the LBC team has continued to expand and attract global collaborators. New projects include cutting-edge research into DNA methylation, cell-free DNA, and the analysis of over 10,000 blood proteins—all made possible through your contributions. These advances help researchers understand why people age differently, and your data continues to influence science and policy alike. The team has now published over 720 scientific papers, including 64 recent papers; 44 using LBC1936 data alone, and 20 using LBC1921 data. These findings are increasingly cited in national and

The LBC team, June 2025

international health policies. LBC data has also caught the attention of funders from around the world, including the Biotechnology and Biological Sciences Research Council and the U.S. National Institutes of Health.

Simon also gave us a quick introduction to the LBC's new home at the Edinburgh Futures Institute — a fitting base for a study rooted in both Edinburgh's past and its future. He reflected on the motivations that keep participants engaged, quoting one who said, "It's not for us, it's for the future." And indeed, your dedication over the years will benefit generations to come. Finally, Simon took a moment to mark a very special occasion: 20 years of participation in the Lothian Birth Cohort 1936. Our warmest thanks and congratulations to all of you for making this journey possible.

Professor Susan Shenkin: LBC Health Update

This year's medical update was delivered by **Professor Susan Shenkin**, who has been involved in the LBC studies for over 20 years. Speaking on behalf of herself and Professor Tom Russ, Susan reflected on the remarkable diversity in how people age, and how the LBC continues to provide a unique opportunity to study this in detail. Drawing on her clinical experience as a geriatrician, Susan discussed some of the challenges that can come with ageing—including changes in strength, function, and cognition—but emphasised that not everyone ages in the same way. The LBC's detailed data, gathered over participants' entire lives,

allows researchers to explore these individual differences and what they might mean for the future. Susan also revisited the issue of dementia. While the majority of participants continue to age cognitively well, the latest data show that approximately 20% of the cohort have now developed dementia—an increase from the previous wave, but still in line with expected trends in later life. Thanks to the LBC's extensive cognitive testing history and access to medical records, researchers have been able to identify early indicators of dementia. These include subtle changes in test scores seen years before a diagnosis. Importantly, brain scans have also revealed that certain areas of the brain show shrinkage in participants who later go on to develop dementia. This has been confirmed in other cohorts, showing the wider value and impact of the LBC data. Looking ahead, Susan shared new research plans that aim to explore how health conditions and "geriatric syndromes" like falls, confusion, and immobility may influence care needs in later life. Two PhD students are beginning work on this important topic and would welcome participants' involvement in future studies.

Professor Mark Bastin: Brain Imaging Update

Professor Mark Bastin gave this year's brain imaging update on behalf of the imaging team, reflecting on nearly two decades of remarkable contributions from LBC participants. Since 2007, the team has collected over 2,000 MRI scans, allowing researchers to track how the brain changes as we age—from age 73 all the way to 88. This consistency of data collection over time means that researchers can measure how the brain's grey matter (used for thinking) and white matter (which helps different brain areas communicate) change as we age. For instance, the team has tracked the shrinkage of certain brain areas

like the hippocampus, which is important for memory, and observed how white matter health can influence cognitive performance. Mark also showed how these brain measurements can be linked to thinking ability across the cohort. By examining thousands of points across the brain, researchers can identify which areas are most strongly associated with better cognitive scores. One example revealed that participants with stronger and more efficient brain connections tended to do better on cognitive tests, especially in later life. This rich, consistent imaging data—combined with your cognitive and lifestyle information—has led to over 200 published papers and informed studies into stroke, multiple sclerosis, and early brain development. The LBC imaging research has truly become a global resource.

Quick fire talks

Ms Sabela Mendez: Highlights from the Testing Team

Sabela Mendez, one of the newer members of the LBC team, shared some highlights from Wave 7 of the study. Though she's only been with us for a year and a half, she's seen the full sweep of this wave unfold—and paid tribute to the testing team making it all happen. Special thanks went to Alison Pattie, who came out of retirement (again!) to lend her familiar warmth and experience. And to Dr Janie Corley, who started testing the LBC1936 at the very beginning and has carried out a staggering 1,097 testing appointments—more than the total number of participants in Wave 1! Sabela spoke about the privilege of getting to

know so many of you, with participants travelling from near and far—sometimes more than 80 miles each way—to take part.

Sabela shared how over the years, your collective contributions have added up in surprising ways: together, across everyone and every wave in the 1921 and 1936s cohorts, your six-metre walks now total 20 miles; your lung function tests have produced 48,000 litres of breath — enough to keep bagpipes playing for 24 hours! Counting the number of times you've been asked to stand up from your chair, back-to-back, as quickly as possible works out as 19,000 chair stands — the equivalent of having a third of the seats at Murrayfield stadium stand up! It's an extraordinary effort, and a reminder of just how much you've given—not just your time, but your energy, commitment, and good humour.

Dr Barbora Skarabela, Mr Damian Hayes, Depute Headteacher, Boroughmuir High School & Nicholas Sim (S6 student): Spreading the Word - Knowledge Exchange and Impact

LBC Knowledge Exchange & Impact Officer, **Dr Barbora Skarabela**, highlighted how your participation goes far beyond academic publications. Since our last reunion, findings based on your data have featured in over 250 media stories from outlets like CNN, BBC, NPR, and The Guardian, highlighting topics from air pollution and brain ageing to the benefits of gardening and the impact of pain on memory. Your involvement is also shaping real-world decisions, with research cited in over 60 policy documents, including those from the Scottish and UK Governments, the U.S. Centers for Disease Control and Prevention, and the World Health Organization.

Barbora also introduced our growing intergenerational education programme, which has now reached over 2,000 people through school visits, public events, and creative activities—from 3D brain models and augmented reality glasses to a board game on brain ageing. These engaging resources are helping make science accessible and meaningful to learners of all ages. One of the highlights was a 10-week course at Boroughmuir High School last Autumn, where students learned about Lothian Birth Cohorts and explored brain and cognitive health. **Damian Hayes**, Depute Headteacher of Boroughmuir

High School, also joined us to share how his students are learning from the study—bridging past and future, research and real life. Damian explained how the programme helps students develop leadership and prepares them for future careers in science and care. S6 student **Nicholas Sim** shared how the course deepened his understanding and inspired him to share knowledge with others. He said "It's really insightful to learn that there is no one silver bullet to solve cognitive ageing. Rather, there's lots of different factors."

Ms Hannah Smith and LBC1936 participant Professor Gordon Milne: Research Partnerships

This year's reunion also shone a spotlight on how your experiences are shaping science in real-time. PhD student Hannah Smith introduced her research into blood-based markers of brain health, supported by LBC data, and shared how her project has been enriched through a lived experience partnership with participant Professor Gordon Milne. Over the past two years, Hannah and Gordon have met regularly to exchange ideas—discussing everything from DNA methylation to the human side of healthy ageing. Gordon offered insights not only from his personal life, but also from decades of

professional experience, helping to make the research more grounded and relatable. He reflected on how wartime diets, physical activity and social discipline may have laid foundations for healthier ageing, and how life experience—from the Navy to academia—has shaped his cognitive and emotional resilience. Their partnership demonstrates the power of collaboration between participants and researchers. As Gordon said, the experience was "constructive, provocative and extremely stimulating" for both sides, and Hannah highlighted how it's helped her ask better research questions and communicate science more meaningfully.

Dr Sarah Harris: Multi-omic Biomarkers

Dr Sarah Harris shared an exciting update on what researchers have learned from the blood samples generously provided by LBC1936 participants over the years. These samples hold an extraordinary range of biological data—known collectively as "omics"—including DNA, RNA, proteins, and more. Sarah explained how we can learn from these data, using a fun analogy: DNA as recipe books, RNA as photocopies handed to chefs, and proteins as the resulting roast chickens! The team has already found key biological markers—like the *APOE* gene variant—that are associated with changes in thinking skills.

Looking ahead, Sarah introduced a major new international project, funded by the U.S. National Institutes of Health, which aims to identify blood-based protein biomarkers that might predict dementia risk years before symptoms appear. Using blood samples given at age 73, the researchers have measured around 10,000 proteins and will track how these relate to changes in thinking skills over the following decade. The goal? A simple blood test that could one day help detect dementia earlier, guide treatment, and perhaps even suggest helpful lifestyle changes. Sarah thanked all participants for making this crucial work possible and promised to return with more results in the years to come.

Professor Ian Deary: Address from the Founding Director

Our final speaker of the day was **Professor Ian Deary**, Founding Director of the Lothian Birth Cohorts—who, as ever, combined wit, warmth, and heartfelt thanks in his update to you all. Rather than simply singing your praises, Ian turned to an unexpected assistant: artificial intelligence! He asked ChatGPT to take an impartial look at your achievements and to tell him what the rest of the world might think. First, he typed in a simple question: "Rank the top five studies in the world that focus on cognitive ageing." The response? The Lothian Birth Cohorts of 1936 and 1921 came in first place. Higher than the English Longitudinal Study of Ageing, higher even than the large and well-known Health and Retirement Study in the US. Why? Because of your lifelong contributions—testing at age 11, followed by decades of rich, ongoing data. ChatGPT described the LBC as offering "uniquely rich data from individuals tested at age 11 and again in later life, allowing unmatched insight into lifelong cognitive trajectories."

Of course, Ian couldn't resist one more experiment. In true poetic style (of a sort), he asked ChatGPT to write a poem in the famously clumsy and over-the-top style of William McGonagall—often described as one of the worst poets in the English language. What followed was a two-minute ode to the LBC1936 participants, filled with oddly charming rhymes, unintended humour, and a surprising depth of insight. It was a fitting, funny, and deeply sincere tribute to everything you've made possible.

A GRAND ODE TO THE LOTHIAN BIRTH COHORT 1936 AT 88

(In the Majestic and Unmistakably Awkward Style of William McGonagall)

"O Cohort of Nineteen-Thirty-Six, so grand, Your minds have been studied across the land. At age eighty-eight, you've reached Wave Seven, Your legacy shines like the stars of heaven.

It began on a morning—June 4th, '47,
When you sat the great test (not yet eleven!),
The Scottish Mental Survey, so vast in its scope,
Led by Professor Godfrey Thomson, with vision and hope

He measured your minds as children that day, And now, eight decades have drifted away. Yet still you return, wave after wave, With courage enduring, determined and brave.

With tests of cognition and balance so fine, You've helped researchers draw a clear line. From youth to old age, your data has shown How minds can endure and brightly have grown.

You've walked for the tests, and answered with care, Your memory, thinking, and gait laid bare. From MRI scans humming to hearing tests too, You've helped science know what ageing minds do.

Your contributions are vast and profound,
In publications, your impact is found.
Over 700 peer-reviewed works you've inspired,
Your research has truly been admired.

And citations? A number beyond mere count, Your influence in science does truly surmount. From genetics to imaging, your data has led To insights that others have widely spread.

Professors Deary and Cox, with vision so bright, Have guided this journey with wisdom and might. Their leadership has steered this noble quest, Ensuring the cohort's legacy is the best.

But more than the studies, more than the charts, Your gifts to science come straight from your hearts. With brain tissue and stem cells, you've paved the way. For future discoveries that brighten the day.

Long after we're gone, your contributions remain, In labs and in journals, your impact is plain. You've helped us understand how minds age and grow. A gift to humanity, more than we know.

So raise up your glasses, let joy fill the air, To the Lothian Cohort, beyond all compare. For at eighty-eight, you've reached a great height, And at ninety, you'll shine even more bright.

So bless you, dear cohort, and bless every name, You've earned Scotland's pride—and a bit of world fame. Now rest for a while, then return, if you please, To wave number eight with poise and with ease!"

Created by ChatGPT using a prompt by Professor Ian Deary to create a poem in this style to celebrate the conclusion of LBC1936 Wave 7. Read out by Ian at the Lothian Birth Cohort Reunion event, Edinburgh Futures Institute, Edinburgh, 17th June 2025.

Participant Questions

This year, we invited questions both in advance of the reunion and during the event itself, so that even those unable to attend would have the opportunity to contribute. We're grateful to everyone who shared their questions—and we're delighted to answer them here.

When LBC1936 got underway there were 1091 members. How many active participants are there now 20 years later? And what is the ratio of men to women?

These are two great questions, and they both speak to how the LBC1936 study has changed over time — and just how remarkable it is that we're still going strong, over two decades after the first wave. When LBC1936 got underway in 2004, there were 1,091 participants, with a near-even split between men and women — 548 men and 543 women. As we finish Wave 7, we have 228 active participants still involved in the study. That means they continue to be invited to future waves, even if they couldn't attend their most recent appointment. We were absolutely delighted to see 192 of you in clinic for Wave 7 — a huge

achievement at this stage in life. Among those attending Wave 7, there were slightly more women (103) than men (89) — a small shift, but one that's not unexpected, given that women tend to live longer on average.

How does stroke fit into things? How does stroke affect cognitive ageing etc.

Many changes in the brain can affect cognitive ageing and strokes are no exception. Depending on where in the brain the stroke happens, different aspects of brain function can be affected and this can be more-orless permanent. Sometimes there are changes in memory or other thinking skills following a stroke. Having a stroke tends to be followed by an increased risk of steeper cognitive ageing, but it depends on the severity, location and number or history of strokes. It's worth noting that the LBC studies aren't well set up to study stroke, since people who have major strokes tend not to come back for the long cognitive and physical appointments (but there are other excellent studies like Mild Stroke Study and Mild Stroke Study 2, run by LBC Co-Investigator Professor Joanna Wardlaw, that do just this, and have contributed a lot to our understanding of the above.

For more information the following Stroke Association website provides some helpful information

www.stroke.org.uk/stroke/effects/cognitive/memory-and-thinking

To access these online resources:

- 1. Open your camera app (on most smartphones)
- 2. Hold your phone so that the QR code is visible in the camera's view
- 3. A link should appear tap to open.

Have any other countries gone back as far as we have with data collection?

Very few studies anywhere in the world go back as far as the Lothian Birth Cohorts. Thanks to the Scottish Mental Surveys, we have cognitive test scores from almost everyone born in 1921 or 1936 taken at age 11 — and we've followed many of those same people into their 70s, 80s, and 90s. A few other countries do have long-running birth cohorts, such as the Danish cohort studies and the Helsinki Birth Cohort Study.

Denmark has exceptionally good population registers and has followed various birth cohorts for decades, often linking health, education, and social data from early life onwards. However, most Danish cohort research relies on routinely collected records, rather than direct, standardised cognitive testing in childhood, so they don't have childhood intelligence.

The Helsinki Birth Cohort Study follows people born in Helsinki between 1934 and 1944, using detailed birth and child health records, and links them to later-life health and social outcomes. While it's a rich source of early-life health and growth data, it does not have repeated in-person testing in older age. It also doesn't have childhood cognitive test scores for the entire cohort like LBC does.

What makes the Lothian Birth Cohorts unique internationally is that we have direct, standardised cognitive test results at age 11 for nearly the entire population of a birth year, combined with multiple waves of detailed later-life cognitive, health, and brain imaging data. This combination is extremely rare worldwide.

How do the results of your studies compare with those from other countries?

There are many studies on cognitive ageing, and overall, their findings broadly agree with ours. Some of these studies lack the depth of data we have, while others include measures that we do not; in other words, we can investigate certain questions that other cohorts cannot, and they can explore areas beyond our scope. Importantly, the findings from the Lothian Birth Cohort studies align with broader international research in several key areas:

Stability of Intelligence: The LBC studies demonstrate that intelligence measured in childhood is strongly correlated with cognitive performance in older age, a finding consistent with studies in other populations. For instance, research in Sweden and the United States has also shown a strong link between early-life intelligence and later-life cognitive outcomes.

Impact of APOE E4 Allele: The presence of the APOE E4 allele has been associated with cognitive decline in the LBC1936, a finding that mirrors results from other international cohorts, underscoring the genetic risk factor's relevance across different populations. In future, this kind of genetic information might help doctors understand who's at greater risk, but it's just one piece of the puzzle. Lifestyle and environment still play a big role in healthy ageing.

Role of Lifestyle Factors: LBC studies have highlighted the importance of physical activity, smoking, and other lifestyle factors in cognitive ageing. These associations are in line with findings from other international studies, suggesting that lifestyle interventions could be beneficial across various populations.

This paper provides a handy overview www.annualreviews.org/content/jour nals/10.1146/annurev-devpsych-121318-085204

A recent visit to New York and Ellis Island where immigrants to USA arrived was most interesting. In 1917 Doctors H.A. Knox, GA Kempf and MK Gwyn introduced intelligence tests. Nothing like Prof Godfrey Thomson's test but more like LBC1936 wave tests! Is there any connection?

The first proper cognitive test was the Binet test, and elements of it have influenced many subsequent tests, including those used during World War I and at Ellis Island.

Professor Godfrey Thomson, on the other hand, developed his own distinct tests in Scotland. These tests emphasized the structure of intelligence, aiming to understand cognitive abilities broadly and systematically, not just as a screening tool. So, the questioner is correct: the tests we use today in the LBC studies (many are Wechsler tests, which in turn were influenced by Binet) are more similar to those early U.S. tests than they are to the original Thomson–Moray House Tests.

This history is described here:

www.tandfonline.com/doi/abs/10.1
076/jcen.24.3.383.981

Why don't you consider setting up a way for people to connect from similar schools, as previous school friends have left us, passed on...?

Thank you for this thoughtful suggestion — it's a wonderful idea. We know how important those early-life connections can be, especially as time moves on and school friends may have drifted away or sadly passed on. As we would need everyone's consent, we're not able to put people directly in touch with former classmates. However, we'd love to help create opportunities for you to reconnect with others who may have attended the same schools or shared similar backgrounds. Some of you may remember that we set up spaces for past pupils of different primary schools to gather at a previous reunion, and we'd be delighted to offer something similar at our next reunion.

How does chronic pain affect the brain? Does use of drugs for pain affect the brain over the years of administration?

This is a very timely question. You may recall that we asked you some questions about pain as part of our collaboration with the CAPE project collaborations at the University of Dundee and elsewhere. There is a well-reported association between chronic pain and poorer thinking skills, but the 'why' remains an important matter to be properly explained. For example, chronic pain or medication could be acting as a distractor in the short-term in some combination, or chronic exposure to pain and/or many years of medication could be acting on your brain in important ways over time. These are questions we are currently investigating in collaboration with Professor Tim Hales, Dr Chloe Fawns-Ritchie here in the Psychology Department, and also with the international ENIGMA consortium. Watch this space.

Are you still researching MND as well as MS? It would be interesting to see MS included in research. Any progress for old age (my daughter died at 50)?

The LBC1936 was designed so that everyone joining at 70 years old had no neurodegenerative diagnoses. Over time, sadly, some people have developed these (such as dementia, as above). However, Motor Neurone

Disease (MND) and Multiple Sclerosis (MS) are not present in sufficient numbers in the LBCs to investigate properly. Nevertheless, LBC Co-Investigator Professor Mark Bastin collaborates with researchers to understand MS and MND. In particular, methods first developed in the LBC1936 study, such as brain scanning methods that map the wiring of the brain (tractography) and approaches that look at how different brain regions work together as a network (structural connectomics) are currently being used to identify brain abnormalities and relationships to disability and fatigue in a large cohort of patients recently diagnosed with MS (the FutureMS study). So, all the work put into developing brain imaging methods has not only advanced our understanding of ageing, but has also helped research into other conditions.

www.annerowlingclinic.org/researchtrials/find-project/futurems-phase-2

Can Omega-3 fatty acids have a significant benefit for brain health?

While the Lothian Birth Cohort study hasn't collected data on Omega-3s specifically, these healthy fats—found in oily fish like salmon and mackerel—have been widely studied in relation to brain health. Some research suggests that Omega-3s may help maintain brain function as we age, and they've been linked to slower cognitive decline in some studies. However, not all research agrees, and the effects seem to be modest overall. Eating a balanced diet that includes Omega-3s is still considered good for general health, including the brain.

There seems to be more people living longer to 80, 90 and even 100. There also appears to be more people who develop dementia or Alzheimer's. Are these conditions inevitable when you get old? We all get forgetful and confused at times and it is quite worrying. Have you discovered any factors that can help to alleviate this? My grandchildren all exercise more than I ever did and eat different food! Will they live to be 150?

It's true that more people are living into their 80s, 90s and beyond—and with that, we do see more cases of dementia. But dementia is not an inevitable part of ageing. Many people keep their thinking and memory abilities well into very old age. In the Lothian Birth Cohort, we've found that certain things are linked with better brain health in later life—such as staying mentally active, being physically active, and having good social connections. A healthy lifestyle won't guarantee protection, but it may reduce the risk or delay the onset.

It's also completely normal to be a bit more forgetful with age—that doesn't necessarily mean something is wrong. As for your grandchildren, it's great that they're looking after their health. We can't say whether they'll live to 150, but their healthy habits might just help them live longer—and better. Our research supports the idea of marginal gains for healthy ageing: small, positive changes in many areas of life can add up over time. If your grandchildren keep building these good habits now, they may be giving themselves the best possible chance of a longer, healthier life.

A recent article in the Metro mentioned a study in the USA by a Dr Abidemi Otaiku of Birmingham University. Bad dreams and nightmares are linked to a high risk of dementia in old people.

There has been some research—like the study mentioned—that suggests people who frequently have nightmares in middle or older age might be more likely to experience memory problems later on. It's an interesting finding, but it doesn't mean that having the odd bad dream is something to worry about. Lots of things can cause bad dreams, like stress, poor sleep, or certain medications. More research is needed to understand the link fully, but looking after sleep, mood, and general health may help protect brain health too.

Why were participants not asked about careers?

Actually, we did ask quite a lot about your careers! When you first joined the study, we collected detailed information from you about your jobs over the course of your life—including your main occupation, the most senior role you held, and even how complex your work was. This information has been really valuable in helping us understand how lifelong work experiences relate to thinking skills in older age. One of our researchers even published a study showing that people who had more complex jobs, especially involving people and information, tended to do better on cognitive tests at age 70—even after taking childhood intelligence into account.

We also use job information to help us understand people's occupational social class—a way researchers often group jobs based on things like responsibilities and training. This can help us understand patterns across different backgrounds, but of course, every individual's experience is unique.

If you would like more information on any of the research mentioned here, please contact the team and they will be glad to send an electronic or paper copy of some relevant reports to you.

What do the LBCs mean to you?

At the reunion, you were asked if you would be interested in participating in focus groups to gather thoughts on attitudes to ageing. Thank you to those of you who have already volunteered; we will be in touch with you soon! If you did not get the chance to volunteer, but would be interested in this sort of project in the future, please let us know using the contact details below or by emailing: lbc.ke@ed.ac.uk.

Contact us

If you'd like to get in touch with the team, we'd be delighted to hear from you! Contact us here:

Email: lbc1936@1936@ed.ac.uk

Phone: 0131 651 1681

Website: www.lothian-birth-cohorts.ed.ac.uk

Bluesky:@edinunilbc.bsky.social

Twitter: @EdinUniLBC

Post: Lothian Birth Cohorts

Psychology Department

University of Edinburgh

7 George Square

Edinburgh

EH8 9JZ

Please note: Although our team is now based at the Edinburgh Futures Institute (EFI), as mentioned at the reunion and in this newsletter, we are still using the 7 George Square address for all postal mail.

